A Comprehensive Model of High-Rate Matrix-Acid Stimulation for Long Horizontal Wells in Carbonate Reservoirs: Part I—Scaling Up Core-Level Acid Wormholing to Field Treatments

Author:

Furui K..1,Burton R.C.. C.1,Burkhead D.W.. W.1,Abdelmalek N.A.. A.1,Hill A.D.. D.2,Zhu D..2,Nozaki M..2

Affiliation:

1. ConocoPhillips

2. Texas A&M University

Abstract

Summary Matrix-acidizing models have traditionally underpredicted acid-stimulation benefits because of underprediction of wormhole penetration and the corresponding magnitude of completion-skin factors in vertical wells. For long horizontal wells drilled in carbonate reservoirs, productivity enhancement is a function of acid placement and effective wormhole penetration. However, prediction of wormhole penetration requires more effective analysis than that provided by current industry models. This paper presents results of matrix-acid modeling work for horizontal wells and describes a practical engineering tool for analyzing the progress of matrix-acid stimulation in carbonate reservoirs. The wormhole-growth model is based on the Buijse and Glasbergen empirical correlation. Combining with the mechanistic model of the wormhole propagation based on acid transport and fluid loss from a single wormhole, a modified Buijse-Glasbergen wormhole-growth model is developed that relates the wormhole growth rate to the in-situ injection velocity at the tip of the dominant wormhole. The wormhole constitutive model developed in this study also accounts for core-size dependencies seen in laboratory acid-flood experiments. A semianalytical flow correlation is derived for estimating interstitial velocities at the tip of the dominant wormholes based on a number of 3D FEM simulation analyses, accounting for more realistic flow regimes (radial and spherical flow) typically observed in field application. The scaleup procedure developed in this study extends the wormhole geometry and penetration from laboratory flow tests on small cores to field-sized treatments. The scaleup procedure developed in this work can be applied to cemented and uncemented horizontal wells, including barefoot and perforation-cluster completions typically employed in carbonate reservoirs. Application of this modeling shows that acid wormholing through carbonate formations can provide significant stimulation, resulting in post-stimulation skins as low as–3.5 to–4.0 vs. previously predicted values in the –1.0 to–2.0 range.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3