Three Phase Steady State Flow Experiments to Estimate Microemulsion Viscosity

Author:

Davidson Andrew1,Nizamidin Nabijan1,Alexis Dennis1,Kim Do Hoon1,Unomah Michael1,Malik Taimur1,Dwarakanath Varadarajan1

Affiliation:

1. Chevron Energy Technology Company

Abstract

Abstract Low microemulsion viscosity is critical for the success of chemical EOR. Typical microemulsion viscosities are measured using a rheometer and are considered to be static measurements. Given that microemulsions have a propensity to show non-Newtonian behavior, static viscosity measurements are not scalable to dynamic viscosities observed in cores and hence difficult to scale-up to field designs using simulations. We present a technique to measure dynamic microemulsion viscosity using a modified two-phase steady state relative permeability setup. Such dynamic viscosities provide a more practical feel for microemulsion viscosity under reservoir conditions in the pores and allow for selection of low microemulsion viscosity formulations. A two-phase steady state relative permeability setup was used with continuous co-injection of oil and surfactant. A glass filled sand pack was used as a surrogate core and the injection fluids were allowed to equilibrate into the appropriate phases as determined by the phase behavior. For the rapidly equilibrating and low viscosity Winsor Type III formulations three phases are clearly observed in the sand packs. Using the phase cuts in the sand pack/effluent and the known oil and water viscosities, we can estimate the microemulsion viscosity. Both low and high viscosity formulations were tested in corefloods and oil recovery measured to illustrate the importance of low viscosity microemulsions for oil recovery. As expected, the low viscosity microemulsions correlated with higher oil recovery. In addition, the equilibration times to reach Winsor Type III microemulsions were also linked to better oil recovery. For the well behaved formulations that equilibrated in less than 2 days the static microemulsion viscosity correlated well with the dynamic viscosity. The modified steady state relative permeability setup can accurately estimate microemulsion viscosity and allow for better screening of surfactant formulations identified for field flooding. The dynamic microemulsion viscosities can also provide inputs for numerical simulation and better predict microemulsion behavior in the subsurface during field surfactant floods.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3