Laboratory Evaluation of Multiphase Permeability Evolution in Tight Sandstones: Impact of Slickwater and Friction Reducers

Author:

Abaa Kelvin1,Yilin-Wang John1,Elsworth Derek1,Ityokumbul Mku1

Affiliation:

1. The Pennsylvania State University

Abstract

Abstract Fracture fluid filtrate in low permeability sandstones may severely reduce the effective gas permeability. This work investigates the role that fluid filtrate from slickwater fracturing has on rock-fluid and fluid-fluid interactions and to quantify the resulting multiphase permeability evolution during imbibition and drainage of the filtrate by means of specialized core testing techniques. Three suites of experiments were conducted. In the first suite of experiments, fluid leak-off tests were conducted on selected core samples to determine the extent of invasion and leakoff characteristics. In the second suite, multiphase relative permeability measurements were conducted on sandstone plugs saturated with fracture fluid filtrate. Pulse decay permeability techniques were employed to measure liquid and gas effective permeability for both drainage and imbibition cycles. These experiments capture dynamic permeability evolution during invasion and cleanup of the fracture fluid (slickwater). The final suite of experiments consist of adsorption flow tests to investigate, identify and quantify possible mechanisms of adsorption of the polymeric molecules of friction reducers present in the fluid filtrate to the pore walls of the rock sample. Imbibition tests and observation of contact angles were conducted to investigate possible changes in wettability. Results from multiphase permeability flow tests show an irreversible reduction in end-point brine permeability and relative permeability with increasing concentration of friction reducer. Our results also show that effective gas permeability during drainage of the imbibed slickwater fluid is principally controlled by trapped gas saturation rather than by changes in interfacial tension. Adsorption flow tests identified adsorption of polymeric molecules of the friction reducer present in the fluid to the pore walls of the rock. The adsorption friction reducer increases wettability of the rock surface and results in the reduction of liquid relative permeability. The originality of this work is to derive a set of multiphase and petrophysical parameters from laboratory experiments that adequately captures multiphase permeability evolution specific to slickwater fluid systems, during imbibition and flowback. This will be useful in diagnosing formation damage from aqueous phase retention and optimizing fracturing fluid selection.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3