First Nanoparticle-Based EOR Nano-EOR Project in Japan: Laboratory Experiments for a Field Pilot Test

Author:

Kaito Yutaro1,Goto Ayae1,Ito Daisuke1,Murakami Satoru2,Kitagawa Hirotake2,Ohori Takahiro2

Affiliation:

1. Japan Petroleum Exploration Co. Ltd.

2. Nissan Chemical Corporation

Abstract

Abstract"Nanoparticle-based enhanced oil recovery (Nano-EOR)" is an improved waterflooding assisted by nanoparticles dispersed in the injection water. Many laboratory studies have revealed the effectiveness of Nano-EOR. An evaluation of the EOR effect is one of the most critical items to be investigated. However, risk assessments and mitigation plans are as essential as investigation of its effectiveness for field applications. This study examined the items to be concerned for applying Nano-EOR to the Sarukawa oil field, a mature field in Japan, and established an organized laboratory and field tests workflow. This paper discusses a laboratory part of the study in detail.This study investigated the effect and potential risks of the Nano-EOR through laboratory experiments based on the workflow. The laboratory tests used surface-modified nanosilica dispersion, synthetic brine, injection water, and crude oil. The oil and injection water were sampled from a wellhead and injection facility, respectively, to examine the applicability of the EOR at the Sarukawa oil field. The items of the risk assessment involved the influence on an injection well's injectivity, poor oil/water separation at a surface facility, and contamination of sales oil.A series of experiments intended for the Sarukawa oil field showed that 0.5 wt. % nanofluid was expected to contribute to significant oil recovery and cause no damage on an injection well for the reservoir with tens of mD. This is considered a favorable result for applying Nano-EOR to Sarukawa oil field because it contains layers of tens mD. Furthermore, the experiments also showed that 0.5 wt.% nanofluid did not lead to poor oil/water separation and contamination of sales oil. Thus, field tests are designed with this concentration.This paper introduces the entire study workflow and discusses the detailed procedure and results of experiments investigating the Nano-EOR effect and potential risks.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3