A Pilot Test of Polymer Flooding in an Elevated-Temperature Reservoir

Author:

Tielong Chen1,Zhengyu Song2,Fan Y.3,Changzhong Hu2,Ling Qiu2,Jinxing Tang2

Affiliation:

1. Southwest Petroleum Inst.

2. Henan Petroleum Admin.

3. U. of Tulsa at NIPER

Abstract

Summary We conducted a pilot test of polymer flooding in the Shuanghe reservoir located in the southeast Henan oil field, China. The target reservoir has a net thickness of 15.56 m (50 ft), an average permeability of 420 md, and a temperature of 75°C (167°F). The polymers used are two types of modified partially hydrolyzed Polyacrylamides, named S525 and S625, which have molecular weights of 16,700,000 and 19,670,000 daltons, respectively. The objective of this pilot test is to investigate the feasibility of polymer flooding for improving oil recovery in an elevated-temperature reservoir. The polymer flooding started in February 1994. Through December 1995, a total of 246 tons (about 0.5 × 106 lbm) of dry polymer had been used with an injection concentration of 900 to 1,100 ppm. The pore volume (PV) injected reached 0.2164. As a result, oil production increased by 22,000 tons (184,000 bbl) and water production decreased by 153,000 tons (962,000 bbl), which accounts for the incremental oil recovery of 3.8% and water-cut reduction of 5.6% in the test block. We estimate that, by the end of this project, the ultimate increase in oil production will exceed 63,000 tons (528,000 bbl) with the enhanced oil recovery going up to 9.8%. The yield is 0.2 tons more oil produced per kilogram of polymer injected or 0.7 barrel of oil produced per pound of polymer. We attribute the success of the pilot test to the techniques used during the implementation of the flooding, including prevention of polymer-thermal degradation, good reservoir description, and the profile modification carried out before and after the polymer injection. This pilot test illustrates a case where polymers with extra-high molecular weight are successfully injected in an elevated-temperature reservoir to control the mobility ratio and modify the permeability profile.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3