Improving Heavy Oil Recovery by Unconventional Thermal Methods

Author:

Alomair O..1,Alarouj M..1,Althenayyan A..1,Alsaleh A..1,Mohammad H..1,Altahoo Y..1,Alhaidar Y..1,Alansari S..1,Alshammari Y..1

Affiliation:

1. Petroleum Engineering Department, Kuwait University

Abstract

Abstract Thermal recovery methods have the objective of accelerating hydrocarbon recovery by raising the temperature of the formation and reducing hydrocarbon viscosities. Thermal recovery involves several well-known processes such as steam injection, in situ combustion, steam assisted gravity drainage (SAGD), and a more recent technique that consists of heating the reservoir with electrical energy. The most common thermal method is steam injection. However, some difficulties occurs with steam injection includes; water availability, the cost of water vaporization process, and how to keep steam temperature above the condensation temperature at reservoir conditions. Also it is limited to relatively shallow, thick, permeable, and homogenous sand reservoirs that are located onshore. In this project three unconventional thermal approaches were developed in laboratory scale to improve the recovery of heavy oil. Those methods are; electrical resistant electrodes, electromagnetic inductors, and microwaves. Designing and experimenting were prepared using low cost material to achieve the success of the new approaches. In the electrical resistance approach, a potential difference was applied between two electrodes; one act as anode and the other one as a cathode. A sufficient heat has been introduced between the electrodes, which improved the oil recovery by adding a maximum of 21% additional recovery to the primary recovery. For the electromagnetic induction, a coil has been wrapped around a core through which the introduced heat was transmitted to the fluid inside and hence increasing the oil recovery by a maximum of 34%. As for the microwave method, microwaves were applied on the core to vibrate water molecules. These microwaves were created and applied by using normal microwave oven, where the waves were transmitted from the source, and reflected inside an isolating body to prevent any wave leakage. The molecules movement resulted in heat generation and thus a reduction in the oil viscosity. The conducted test revealed an increase of 30% in the oil recovery which varies according to the operating power. Finally, economical comparison between the proposed methods was conducted. The three methods were compared by combining recovery and power consumption. Average power consumption per unit production for electromagnetic induction, Electrical Resistance, and microwave were 39, 2570, and 3.775 watt.hr/cc, respectively. The comparison revealed that the Microwave Heating is the most economical choice followed by electromagnetic induction and finally the electrical resistance heating.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3