Effects of Oil Viscosity and Injection Velocity on Imbibition Displacement in Sandstones

Author:

Arab Danial1,Kantzas Apostolos1,Bryant Steven L.1

Affiliation:

1. University of Calgary

Abstract

Abstract Water flooding has been applied for more than seventy years in both conventional and unconventional heavy oil reservoirs. Although it is generally accepted that the mechanisms of water flooding in heavy oil systems are totally different than that of light oil reservoirs, there is not a systematic study to specifically investigate water flooding in heavy oil systems. This article presents the findings of core flooding experiments in water-wet systems and gives some insights on the interplay between capillary and viscous forces in imbibition displacement processes. Seven different oils of various viscosities, ranging from 1 to 15,000 mPa.s at 25 °C, were used in nineteen core flooding experiments where injection velocity was changed from 0.7 to 24.3 ft/D (2.5 × 10−6 m/s to 86.0 × 10−6 m/s). An in-line densitometer was used to precisely determine breakthrough time. Capillary forces and instability analysis were used to quantify the balance between viscous and capillary forces. On physical grounds, the capillary number, which is the relative magnitude of viscous and capillary forces during a displacement, should be the first-order influence on residual oil saturation. However, Abrams (Abrams, 1975) showed that accounting for the viscosity ratio improves the correlation to residual oil saturation for oil viscosity below 37 mPa.s. Our observations extend the range of oil viscosity to 15,000 mPa.s and when combined with 178 datasets from the literature indicate that viscosity ratio has much more influence than capillary number on residual oil saturation. Standard models such as Buckley-Leverett theory predict that oil recovery at water breakthrough depends only on phase mobilities. However, our observations indicate that flow velocity also influences breakthrough oil recovery. At oil to water viscosity ratios smaller than 20, breakthrough oil recovery monotonically increases with increasing injection velocity. For intermediate viscosity ratios (20 < μo < 160), breakthrough oil recovery increases with decreasing injection velocity. At higher values of viscosity ratios, breakthrough oil recovery is almost independent of injection velocity. In these cases, late time oil recovery remarkably increases with decreasing injection velocity. This effect is more pronounced in more viscous oil systems suggesting the importance of imbibition in these systems. Our observations prove that water flooding, if applied at the most optimized mode that is a strong function of oil viscosity, can still be a very efficient EOR technique.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3