Evaluating the Performance of Surfactants in Enhancing Flowback and Permeability after Hydraulic Fracturing through a Microfluidic Model

Author:

Liang Tianbo1,Xu Ke2,Lu Jun3,Nguyen Quoc4,DiCarlo David4

Affiliation:

1. China University of Petroleum, Beijing

2. Massachusetts Institute of Technology

3. University of Tulsa

4. University of Texas at Austin

Abstract

Summary Hydraulic fracturing can create a large fracture network that makes hydrocarbon production from low-permeability reservoirs economical. However, water can invade the rock matrix adjacent to the created fractures and generate water blockage that impairs production. Using surfactants as fracturing-fluid additives is a promising method to enhance the fluid flowback, and thus mitigate the water blockage caused by invasion. It is imperative to understand how surfactants work during the fracturing and production stages, so as to maximize their effectiveness in production enhancement. In this study, an experimental investigation is conducted using a “chipflood” sequence that simulates fluid invasion, flowback, and hydrocarbon production from hydraulically fractured reservoirs. All experiments are conducted in a 2.5D glass micromodel that provides direct observation of in-situ phase changes when different Winsor types of microemulsions formed in the porous medium. The results provide direct evidence of the impact of the matrix–fracture interaction as well as water removal when surfactants are used. They further elucidate why surfactants under different Winsor-type conditions perform differently in mitigating the water blockage. This helps to clarify the screening criteria for optimizing flowback surfactant in hydraulic fracturing.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3