Inferring Interwell Connectivity from Well Bottomhole-Pressure Fluctuations in Waterfloods

Author:

Dinh Anh1,Tiab Djebbar1

Affiliation:

1. University of Oklahoma

Abstract

Summary This paper presents a new procedure to determine interwell connectivity in a reservoir on the basis of fluctuations of bottomhole pressure of both injectors and producers in a waterflood. The method uses a constrained multivariate linear-regression (MLR) analysis to obtain information about permeability trends, channels, and barriers. Previous authors applied the same analysis to injection and production rates to infer connectivity between wells. In order to obtain good results, however, they applied various diffusivity filters to the flow-rate data to account for the time lags and the attenuation. This was a tedious process that requires subjective judgment. Shut-in periods in the data, usually unavoidable when a large number of data points were used, created significant errors in the results and were often eliminated from the analysis. This new method yielded better results compared with the results obtained when production data were used. Its advantages include: (1) no diffusivity filters needed for the analysis, (2) minimal number of data points required to obtain good results, (3) and flexible plan to collect data because all constraints can be controlled at the surface. The new procedure was tested by use of a numerical reservoir simulator. Thus, different cases were run on two fields, one with five injectors and four producers and the other with 25 injectors and 16 producers. For a large waterflood system, multiple wells are present and most of them are active at the same time. In this case, pulse tests or interference tests between two wells are difficult to conduct because the signal can be distorted by other active wells in the reservoir. In the proposed method, interwell connectivity can be obtained quantitatively from multiwell pressure fluctuations without running interference tests.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3