Evaluating the Transport Performance of Novel-Shaped Proppant in Slickwater Fracturing with the Multiscale Modeling Framework

Author:

Zeng Junsheng1,Li Heng2,Li Sanbai3ORCID,Zhang Dongxiao3

Affiliation:

1. Peng Cheng Laboratory, Shenzhen, China

2. China University of Geosciences, Wuhan, China

3. Southern University of Science and Technology, Shenzhen, China

Abstract

Summary Recently, novel-shaped proppant, such as rod-shaped and x-shaped proppant, has been gradually used in hydraulic fracturing systems, which challenges the validity of previous transport laws for conventional spherical proppant. In this work, a multiscale modeling framework is proposed to solve this issue. We start from constructing particle-scale laws, including proppant settling, phase-slip, and effective slurry viscosity, based on a refined particle-resolved direct numerical simulation method, that is, the immersed boundary-computational fluid dynamics-discrete element method (IB-CFD-DEM). With this refined simulation method, particle-scale flow details are fully resolved, and accurate particle-scale laws can be reconstructed for novel-shaped proppant. These sub-scale laws are then applied to a field-scale simulation method, that is, the multiphase particle-in-cell (MP-PIC) method. Based on the proposed framework, transport performance of various types of proppant are investigated. Several numerical experiments demonstrate that proppant transport performance can be enhanced by 19 and 15% with x-shaped and rod-shaped proppant, respectively, compared to conventional spherical proppant under 5% inlet proppant concentration and enhanced by 16 and 10%, respectively, under 20% inlet proppant concentration. Moreover, related complicated flow mechanisms at different scales, such as the hindered effect and viscous gravity current effect, are fully discussed, which deepens our understanding of proppant transport and proppant placement.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Reference38 articles.

1. A Review on Proppant Transport Modelling;Barboza;J. Pet. Sci. Eng,2021

2. Experimental and Numerical Modeling of Convective Proppant Transport;Barree;J Pet Technol,1995

3. SPE Annual Technical Conference and Exhibition;Blyton,2015

4. Effects of Particle Migration on Suspension Flow in a Hydraulic Fracture;Boronin;Fluid Dyn,2014

5. SPE Annual Technical Conference and Exhibition;Clark,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3