Enhancing the Resolution of Micro-CT Images of Rock Samples via Unsupervised Machine Learning based on a Diffusion Model

Author:

Ma Zhaoyang1,Sun Shuyu1,Yan Bicheng1,Kwak Hyung2,Gao Jun2

Affiliation:

1. Professor, Earth Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, KAUST

2. Saudi Aramco EXPEC Advanced Research Center, Reservoir Engineering Technology Division, Pore Scale Physics Focus Area

Abstract

Objectives/Scope X-ray Micro-Computer Tomography (μ-CT) has been widely adopted in earth science and petroleum engineering due to its non-destructive characteristic. Meanwhile, this three-dimensional-imaging method can be integrated with computer simulation to investigate petrophysical properties of reservoir rocks at pore scales. However, the application of μ-CT is limited by the trade-off between field of view and resolution, and it is challenging to indicate the pore structure of rocks, especially for shale or carbonate rocks. To address this issue, deep-learning-based super-resolution techniques have rapidly developed in the past few years. Methodology In this study, a super-resolution algorithm based on the state-of-the-art (STOA) diffusion model is proposed to generate super-resolved CT images for carbonate rocks. The proposed method adapts denoising diffusion probabilistic models to conditional image generation and performs super-resolution through a stochastic denoising process. Cascaded diffusion model is utilized to increase the training speed and generate high fidelity CT images. This method exhibits superior performance in the resolution-enhancement of CT images at various magnification factors (with a large scaling factor of up to 16) without the occurrence of image-noise and image-blurring issue, and the super-resolved CT images performs well for the calculation of petrophysical properties of carbonate rocks. Results This algorithm is applied to the carbonate rock and the performance of the diffusion model is evaluated by quantitative extraction and qualitative visualization. In addition, this method is compared with other methods, such as GAN, Variational Autoencoder, and Super-Resolution Convolutional Neural Networks (SRCNN). The results indicate that the built model shows excellent potential in enhancing the resolution of heterogeneous carbonate rocks. To be specific, the super-resolved images exhibit clear and sharp edges and a detailed pore network. In addition, it performs well on different upscaling factors (up to 16) and is superior to the existing super-resolution approaches (for both supervised and unsupervised algorithms). This study provides a novel deep-learning-based method using a diffusion model to enhance the resolution of μ-CT images of carbonate rocks (up to 16). Novelty The novelty of this study is three-fold. First, this method belongs to unsupervised learning, indicating that pairs of high-resolution and low-resolution CT images are no longer needed. Second, a large scaling factor (up to 16) is reached without an image-blurring issue, which normally occurs in other deep-learning-based super-resolution algorithms. Third, the quality of super-resolved images is promising and faithful when compared with other generated learning methods, such as Generative Adversarial Networks (GAN).

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3