Recent Advances in Scale Prediction: Approach and Limitations

Author:

Kan Amy T.1,Dai Joey (Zhaoyi)1,Deng Guannan1,Khadouja Harouaka1,Lu Yi-Tsung1,Wang Xin1,Zhao Yue1,Tomson Mason B.1

Affiliation:

1. Rice University

Abstract

Summary Numerous saturation indices and computer algorithms have been developed to determine whether, when, and where scale will form. However, scale prediction can still be challenging because the predictions from different models often differ significantly at extreme conditions. Furthermore, there is a great need to accurately interpret the partitioning of water (H2O), carbon dioxide (CO2), and hydrogen sulfide (H2S) between different phases, as well as the speciations of CO2 and H2S. This paper summarizes current developments in the equation-of-state (EOS) and Pitzer models to accurately model the partitioning of H2O, CO2, and H2S in hydrocarbon/aqueous phases and the aqueous ion activities at ultrahigh-temperature, ultrahigh-pressure, and mixed-electrolytes conditions. The equations derived from the Pitzer ion-interaction theory have been parameterized by regression of more than 10,000 experimental data from publications over the last 170-plus years using a genetic algorithm on the supercomputer DAVinCI at Rice University. With this new model, the 95% confidence intervals of the estimation errors for solution density are within 4×10–4 g/cm3. The solubility predictions of CO2 and H2S are accurate to within 4%. The saturation-index (SI) mean values for calcite (CaCO3), barite (BaSO4), gypsum (CaSO4·2H2O), anhydrite (CaSO4), and celestite (SrSO4) are accurate to within ±0.1—and for halite the values are within ±0.01—most of which are within experimental uncertainties. This model accurately defines the pH value of the production tubing at various temperature and pressure regimes and the risk of H2S exposure and corrosion. Furthermore, our model is able to predict the density of soluble chloride and sulfate (SO42−) salt solutions within ± 0.1% relative error. The ability to accurately predict the density of a given solution at temperature and pressure allows one to deduce when freshwater breakthrough will occur. In addition, accurate predictions can only be reliable with accurate data input. The need to improve the accuracy of scale prediction with quality data will also be discussed.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3