Rock Strength from Core and Logs, Where We Stand and Ways to Go

Author:

Khaksar Abbas1,Taylor Philip Geoffrey1,Fang Zhi1,Kayes Toby John1,Salazar Abraham1,Rahman Khalil1

Affiliation:

1. Helix RDS Ltd.

Abstract

Abstract Knowledge of accurate rock strength is essential for in situ stress estimation, wellbore stability analysis, sand production prediction and other geomechanical applications. Reliable quantitative data on rock strength can only be obtained from cores. However, cores are limited, discontinuous and often biased. Consequently, rock strength evaluation is primarily based on log strength indicators, calibrated where possible against limited core measured values. There are a number of published log-core strength correlations that can be used for rock strength modelling. These empirical relationships are developed for specific rock type, age, depth range and field. Their general applications, therefore, need to be critically assessed on a case by case basis. This paper briefly:outlines the best practice for obtaining quality rock strength data from core tests;presents common empirical rock strength equations for sedimentary rocks anddiscusses ways of improving rock strength estimates. While some equations such as porosity-based or sonic log-based rock strength models work reasonably well, rock strength variations within individual rock properties show considerable scatter, indicating that most of the empirical models are not sufficiently generic to fit all rocks in the database. Like any other physical rock properties, the variation in rock strength in a given sedimentary rock is controlled by mineralogy, sedimentology and micro-structure of the rock and simple log-derived rock strength models need further modification and classification incorporating these geological characteristics. This paper has shown that when sufficient core rock strength data exists, applications of computing techniques, such as fuzzy logic and cluster pattern recognition, coupled with sedimentary facies analysis and diagenetic classification can improve strength estimation. Semi-continuous impact energy logs using portable non-destructive testing tools can be correlated with petrophysical logs to generate mechanical facies and improved sampling for conventional rock testing. Introduction Rock mechanical properties are essential for accurate in situ stress analysis and geomechanical evaluations including wellbore stability analysis, sand production prediction and management, hydraulic fracturing design, fault stability and reactivation analysis and other geomechanical applications. The rock mechanical parameters typically required to populate a geomechanical model based on the linear Mohr-Coulomb failure criterion are: Unconfined Compressive Strength (UCS or C0), Friction angle (q) or Coefficient of internal friction, m (where m = tanq), as well as Thick Wall or hollow Cylinder strength (TWC) which may be needed for sanding evaluation and calibration. These properties are commonly known as rock strength parameters. Other essential rock mechanical properties are elastic moduli. The two most common required elastic constants are; Poisson's ratio (n) and Young's modulus (E) from which other elastic moduli such as shear and bulk moduli can be derived. While rock elastic moduli can be derived from well logs (bulk density, both compressional and shear sonic logs), reliable quantitative data on rock strength parameters can only be derived at specific depths from laboratory tests on core samples. Laboratory measurements of elastic moduli on core samples subjected to the in-situ stress condition are also needed to calibrate log-derived (dynamic) elastic moduli to static values measured on cores. Laboratory-based rock strength values are typically determined through triaxial tests on cylindrical samples that are obtained from cores at depths of interest. Continuous profiles of rock strength against depth can be estimated using well logs and empirical core-log relationships. Ideally, log-derived strengths should be calibrated by direct laboratory measured values to ensure that the results are reasonable for the rocks under analysis. However, in most cases the core strength databases are limited, discontinuous and often biased toward stronger intervals. Quality core plugs of non-reservoir formations (for example, mudstones and shales), where most of hole instability problems occur, are rarely available for testing. In practice, many geomechanical problems are often addressed in the absence of core samples for laboratory testing. Consequently, rock strength evaluation is primarily based on log strength indicators, calibrated where possible against limited core measurements.

Publisher

SPE

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3