Reservoir Simulation of Steam Fracturing in Early-Cycle Cyclic Steam Stimulation

Author:

Cokar Marya1,Kallos Michael S.1,Gates Ian D.1

Affiliation:

1. Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary

Abstract

Summary In cyclic steam stimulation (CSS), steam is injected above the fracture pressure into the oil-sands reservoir. In early cycles, the injected steam fractures the reservoir, creating a relatively thin dilated zone that allows rapid distribution of heat within the reservoir without excessive displacement of oil from the neighborhood of the wellbore. Numerical reservoir-simulation models of CSS that deal with the fracturing process have difficulty simultaneously capturing flowing bottomhole-pressure (BHP) behavior and steam injection rate. In this research, coupled reservoir-simulation (flow and heat transfer) and geomechanics models are investigated to model dynamic fracturing during the first cycle of CSS in an oil-sands reservoir. In Alberta, Canada, in terms of volumetric production rate, CSS is the largest thermal recovery technology for bitumen production, with production rates equal to approximately 1.3 million B/D in 2008. The average recovery factor from CSS is between 25 and 28% at the economic end of the process. This implies that the majority of bitumen remains in the ground. Because the mobility of the bitumen depends strongly on temperature, the performance of CSS is intimately linked to steam conformance in the reservoir, which is largely established during steam fracturing of the reservoir in the early cycles of the process. Thus, a fundamental understanding of the flow and geomechanical aspects of early-cycle CSS is critical. A detailed thermal reservoir-simulation model, including dilation and dynamic fracturing, was developed, with the use of a commercially available thermal reservoir simulator, to understand their effects on BHP and injection rate. The results demonstrate that geomechanics must be included to accurately model CSS. The results also suggest that the reservoir dilates during steam injection as the result of increases in reservoir temperature, which lead to thermal dilation and higher pore pressure.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3