A Unified Model for Gas Transfer in Nanopores of Shale-Gas Reservoirs: Coupling Pore Diffusion and Surface Diffusion

Author:

Wu Keliu1,Li Xiangfang2,Guo Chaohua3,Wang Chenchen4,Chen Zhangxin4

Affiliation:

1. University of Calgary and China University of Petroleum

2. China University of Petroleum

3. Missouri University of Science and Technology

4. University of Calgary

Abstract

Summary A model for gas transfer in nanopores is the basis for accurate numerical simulation, which has important implications for economic development of shale-gas reservoirs (SGRs). The gas-transfer mechanism in SGRs is significantly different from that of conventional gas reservoirs, which is mainly caused by the nanoscale phenomena and organic matter as a medium of gas sourcing and storage. The gas-transfer mechanism includes bulk-gas transfer and adsorption-gas surface diffusion in nanopores of SGRs, where the bulk-gas-transfer mechanism includes continuous flow, slip flow, and Knudsen diffusion. First, a model for bulk-gas transfer in nanopores was established, which was dependent on slip flow and Knudsen diffusion. The total gas flux in the bulk phase is not a simple sum of slip-flow flux and Knudsen-diffusion flux but a weighted sum on the basis of corresponding contributions. The weighted factors are primarily controlled by the mutual interaction between slip flow and Knudsen diffusion, which is determined by probabilities between gas molecules colliding with each other and colliding with nanopore surface in this newly proposed model. Second, a model for adsorbed-gas surface diffusion in nanopores was established, which was modeled after the Hwang and Kammermeyer (1966) model and considered the effect of gas coverage under a high-pressure condition. Finally, with the combination of these two models, a unified model for gas transport in nanopores of SGRs was established, and this model was validated through molecular simulation and experimental data. Results show that: Slip flow makes a great contribution to gas transfer under the condition of meso/macropores (pore radius greater than 2 nm) and high pressure. Knudsen diffusion makes an important contribution to gas transfer under the condition of macropores (pore radius greater than 50 nm) and less than 1 MPa in pressure, whereas it can be ignored in other cases. A surface-diffusion coefficient is comparable with a pore-diffusion coefficient, and gas transfer is always dominated by surface diffusion over all the ranges of pressure in micropores (pore radius ≤ 2 nm). Surface-diffusion contribution decreases with an increase in pore size, isosteric sorption heat, pressure, and temperature in SGRs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3