Determining Multiphase Pressure Drops and Flow Capacities in Down-Hole Safety Valves

Author:

Ashford F.E.1,Pierce P.E.2

Affiliation:

1. Mene Grande Oil Co.

2. Otis Engineering Corp.

Abstract

A new relationship describing dynamic multiphase orifice pressure drops and fluid flow capacities has been derived and tested with field data. The mathematical model relates dynamic orifice behavior in both critical and noncritical flow regions. Correlations are presented for predicting the ultimate (critical) capacity of an presented for predicting the ultimate (critical) capacity of an orifice for any given set of dynamic conditions. Introduction A new relationship describing dynamic, multiphase orifice pressure drops and fluid flow capacities has been derived and tested with actual field data. The mathematical model relates dynamic orifice behavior in both critical and noncritical flow regimes. Orifice pressure drops and capacities are related to pertinent fluid properties and choke dimensions. Graphical pertinent fluid properties and choke dimensions. Graphical correlations are also presented to predict the ultimate (critical) capacity of an orifice for any given set of dynamic conditions. To verify the model, a field test was designed and carried out in a flowing oil well. Both orifice pressure drops and fluid flow rates were measured in the well and the information was compared with analogous data predicted by the model. Comparable information was then predicted by the model. Comparable information was then used to compute an "orifice discharge coefficient" that enables calculation of actual orifice capacities from theoretical ones. The discharge coefficients are presented for 14/64-, 16/64- and 20/64-in. orifice diameters. The collected data reflect the behavior of an Otis Engineering Corp. J-type 22J037 safety valve. However, the model may be used to estimate multiphase pressure drops through restrictive beans in safety valves of other internal geometrical configurations. Discussion The increased need for more accurate settings on downhole, self-contained, flowing safety devices (storm chokes) has prompted efforts by many oil-producing companies to develop new multiphase orifice flow relationships. Interest in antipollution devices, especially in offshore oil-producing areas, has also encouraged the major oil companies to re-evaluate old, established procedures for the design of oil- and gas-well safety procedures for the design of oil- and gas-well safety valves. A review of the existing orifice flow literature and analysis of standard safety-valve design procedures yielded the following facts concerning noncritical multiphase orifice flow.Most orifice flow models do not adequately reflect the compressible nature of actual oilwell multiphase orifice flow. Consequently, models now in use do not adequately describe the dynamic behavior of orifice flow.The existing orifice flow relationships become less exact as the dynamic conditions approach the critical value; that is, at a given upstream pressure, no further flow-rate increase occurs through the orifice, regardless of the pressure drop across the orifice. Those who are involved in manufacturing down-hole, pressure-drop-operated safety valves are aware of the pressure-drop-operated safety valves are aware of the problems associated with accurate prediction of orifice problems associated with accurate prediction of orifice flow behavior. Most agree that a more rigorous mathematical model is needed to describe the mechanics of orifice flow under all oilfield conditions. The orifice relationships used by design engineers, though acceptable under certain flow conditions, are questionable for applications falling outside these specifications. A more rigorous procedure applicable to oilfield JPT P. 1145

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3