Reduced-Order Modeling for Multiphase Flow Using a Physics-Based Deep Learning

Author:

Alsulaimani Thamer1,Wheeler Mary1

Affiliation:

1. University of Texas at Austin

Abstract

Abstract Reservoir simulation is the most widely used tool for oil and gas production forecasting and reservoir management. Solving a large-scale system of nonlinear differential equations every timestep can be computationally expensive. In this work, we present a two-phase physics-constrained deep-learning reduced-order model as a surrogate model for subsurface flow production forecast. The implemented deep learning model is a physics-guided encoder-decoder, constructed based on the Embed-to-Control (E2C) framework. In our implementation, the E2C works in a way analogous to Proper Orthogonal Decomposition combined with Discrete Empirical Interpolation Method (POD-DEIM) or Trajectory Piece-Wise Linearization approach (POD-TPWL). The E2C-Reduced-order model (ROM) involves projecting the system from a high-dimensional space into a low-dimensional subspace using the encoder-decoder, approximating the progression of the system from one timestep to the next using a linear transition model, and finally projecting the system back to high-dimensional space using the encoder-decoder. To guarantee mass conservation, we adopt the Finite Elements Mixed Formulation in the neural network's loss function combined with the original data-based loss function. Training simulations are generated using a full-physics reservoir simulator (IPARS). High-fidelity pressure, velocity, and saturation solution snapshot at constant time intervals are taken as training input to the neural network. After training, the model is tested over large variations of well control settings. Accurate pressure and saturation solutions are predicted along with the injection and production well quantities using the proposed approach. Errors in the predicted quantities of interest are reduced with the increase in the number of training simulations used. Although it required a large number of training simulations for the offline (training) step, the model achieved a significant speedup in the online stage compared to the full physics model. Considering the overall computational cost, this ROM model is proper for cases when a large number of simulations are required like in the case of production optimization and uncertainty assessments. The proposed approach shows the capability of the deep-learning reduced-order model to accurately predict multiphase flow behavior such as well quantities, and global pressure and saturation fields. The model honors mass conservation and the underlying physics laws, which many existing approaches don't take into direct consideration.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3