Ex-Situ Bioremediation of Hydrocarbon Contaminated Soil - An Example from Oman

Author:

Alexandersen Dennis Kronborg1,Headley Tom1,Prigent Stephane1,Mahmutoglu Ismail2

Affiliation:

1. BAUER Nimr LLC

2. Free Consultant

Abstract

Abstract A few years ago, an oil company in Oman initiated an approach to deal with hydrocarbon-contaminated soils that created environmental problems. These soils where collected in their oilfields and transported to their hazardous waste yards in the country's interior areas. The client entrusted several service providers to carry out de-contamination processes and landfill activities unfortunately with limited success. One of the Waste Yards has stock piled large quantities of hydrocarbon contaminated soil, with contamination concentrations ranging from 15,000 mg/kg total Total Petroleum Hydrocarbons (TPH) soil up to 40,000 mg/kg TPH. The hydrocarbon molecule chains are from various types – starting with short chains i.e. C5 up to long chains C35. In 2012, the client decided to implement a new remediation approach by deploying eco-friendly technologies to properly manage degradation and remediation of the contaminated soil by using modern bio-remediation technology developed and applied by a renowned German remediation company. The technology brings degradation results of reducing hydrocarbon contamination to less than 50%, lower than the international treatment standards and this within the first few weeks of treatment. This paper will provide an overview of the bio-remediation approach used to treat stockpiled TPH contaminated soil. It will present remediation results from the field, but more over it will look into the opportunities and barriers for reusing the treated soil in civil projects without harming the environment and nature. In this specific case, the treated soil was used in one of the world's largest constructed wetlands, which handles 95,000 m3/day produced water. In April/May 2013, new soil tests will be taken to assess the quality of the soil material and subsequent hydrocarbon degradation after being in the wetland for one year.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3