Mechanistic Study for the Applicability of CO2-EOR in Unconventional Liquids Rich Reservoirs

Author:

Alfarge Dheiaa1,Wei Mingzhen2,Bai Baojun2

Affiliation:

1. Iraqi Ministry of Oil, Missouri University of Science and Technology

2. Missouri University of Science and Technology

Abstract

Abstract In shale oil reservoirs, Improved Oil Recovery (IOR) methods are relatively considered as new concepts compared with in conventional oil reservoirs. Different IOR techniques have been investigated by using lab experiments, numerical simulation studies, and limited pilot tests. Unconventional IOR methods include injecting CO2, surfactant, natural gas, and water. However, CO2 injection is the most investigated option due to different reasons. CO2 has lower miscibility pressure with shale oils, and has special properties in its supercritical conditions, and CO2 injection also solves greenhouse problems. In this paper, numerical simulation methods of compositional models were incorporated with LS-LR-DK (logarithmically spaced, locally refined, and dual permeability) reservoir models and Local Grids Refinement (LGR) of hydraulic fractures conditions to investigate the feasibility of CO2 injection in shale oil reservoirs. Different mechanisms for CO2 interactions with organic surface, shale brine, and shale oil were implemented in different scenarios of numerical models. Molecular diffusion mechanisms, adsorption effects, and aqueous solubility effects were simulated in this study. In addition, linear elastic models and stress-dependent correlations were used to consider geomechanics coupling effects on production and injection processes of CO2-EOR in shale oil reservoirs. Some of the results for this simulation study were validated by matching the performance of some CO2 fields’ pilots performed in Bakken formation, in North Dakota and Montana portions. This study extremely found that some of the CO2-EOR pilot tests have a match with the typical simulated diagnostic plots which have CO2 molecular-diffusion rate that is significantly low. Furthermore, this research indicated that CO2 molecular diffusion mechanism has a clearly positive effect on CO2-EOR in huff-n-puff protocol; however, this mechanism has a relatively negative effect on continuous flooding mode of CO2-EOR. Both of dissolution and adsorption mechanisms have a negative effect on CO2 performance in terms of enhancing oil recovery in unconventional formations. Geomechanics coupling has a clear effect on CO2-EOR performance, and different geomechanics models have a different validity in these shale plays. Stress dependent correlations give the best match with CO2-EOR pilots in Bakken formation while linear elastic models would give the best match in Eagle Ford formation. This study explains the effects of different nano and macro mechanisms on the performance of CO2-EOR in unconventional reservoirs since these plays are much complex and very different from conventional formations. Also, general guidelines have been provided in this study to enhance success of CO2-EOR in these types of reservoirs.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3