Fast History Matching of Finite-Difference Models Using Streamline-Derived Sensitivities

Author:

Cheng Hao1,Kharghoria Arun1,He Zhong1,Datta-Gupta Akhil1

Affiliation:

1. Texas A&M U.

Abstract

Summary We propose a novel approach to history matching finite-difference models that combines the advantages of streamline models with the versatility of finite-difference simulation. Current streamline models are limited in their ability to incorporate complex physical processes and cross-streamline mechanisms in a computationally efficient manner. A unique feature of streamline models is their ability to analytically compute the sensitivity of the production data with respect to reservoir parameters using a single flow simulation. These sensitivities define the relationship between changes in production response because of small changes in reservoir parameters and, thus, form the basis for many history-matching algorithms. In our approach, we use the streamline-derived sensitivities to facilitate history matching during finite-difference simulation. First, the velocity field from the finite-difference model is used to compute streamline trajectories, time of flight, and parameter sensitivities. The sensitivities are then used in an inversion algorithm to update the reservoir model during finite-difference simulation. The use of a finite-difference model allows us to account for detailed process physics and compressibility effects. Although the streamline-derived sensitivities are only approximate, they do not seem to noticeably impact the quality of the match or the efficiency of the approach. For history matching, we use a generalized travel-time inversion (GTTI) that is shown to be robust because of its quasilinear properties and that converges in only a few iterations. The approach is very fast and avoids many of the subjective judgments and time-consuming trial-and-error steps associated with manual history matching. We demonstrate the power and utility of our approach with a synthetic example and two field examples. The first one is from a CO2 pilot area in the Goldsmith San Andreas Unit (GSAU), a dolomite formation in west Texas with more than 20 years of waterflood production history. The second example is from a Middle Eastern reservoir and involves history matching a multimillion-cell geologic model with 16 injectors and 70 producers. The final model preserved all of the prior geologic constraints while matching 30 years of production history.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3