Combining Geostatistics With Bayesian Updating To Continually Optimize Drilling Strategy in Shale-Gas Plays

Author:

Willigers B.J.A.. J.A.1,Begg S..2,Bratvold R.B.. B.3

Affiliation:

1. BG Group

2. University of Adelaide

3. University of Stavanger

Abstract

Summary We present a new methodology to evaluate subsurface uncertainty during the development of shale-gas plays. Even after many wells are drilled, the average well production and the variation of well performance (economics) remain highly uncertain. The ability to delineate a shale play with the fewest wells and to focus drilling in the most-productive areas is a major factor in commercial success. The importance of probabilistic modeling in managing uncertainty in shale-gas plays is emphasized in several studies. The objective of this study is to develop a practical methodology that addresses these complexities and is dynamic, in the sense that the optimal drilling strategy can be continually updated as we learn the outcome of each well drilled. Maximizing the returns from a shale-gas play is essentially a problem of choosing well locations and number of wells to optimize production volumes and rates. Drilling policies must take account of many already-drilled locations, possible new drilling locations, spatial dependencies between performance at those different (possible) well locations, and the extent of uncertainty concerning whether a well will be economical. These factors cause typical valuation methodologies to be impractical because of the "curse of dimensionality." In this study, an unconventional play is divided into numerous segments. These segments are referred to as cells. In each cell, a fixed number of wells can be drilled. The chance of success (CoS) [of a well with a net present value (NPV) greater than zero] in any given cell is itself considered to be an uncertain variable. An initial probability distribution for the CoS of each cell is derived from analogous plays plus any available information about the specific play. The methodology proceeds as follows. First, as each new well (or group of new wells) is drilled, the outcome is used in combination with the prior probability distribution (with Bayes theorem) to create an updated probability distribution for the CoS of the relevant grid cell. Thus, our initial estimate can be continuously updated as more actual outcomes are realized. Second, the influence of the new CoS on the surrounding cells, because of spatial correlation, is updated by use of indicator Kriging (IK), a geostatistical technique. This combination of Bayesian update (BU) and IK is referred to as the BU-IK method. The methodology proposed in this study informs the development of drilling policies for shale-gas opportunities with a probabilistic model that accounts for the uncertainty in the CoS and its spatial dependency. The use of cells to represent a set of wells simplifies the analysis and greatly reduces the computing requirements. The methodology is applied to a well set from the Barnett shale in Texas.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3