An Integrated Workflow to Mitigate Drilling Vibrations and Increase Daily Footage

Author:

Bailey J. R.1,Pastusek P. E.1,Junaibi H. Al2,Awadhi M. Al2,Katheeri Y. Al3,Niznik M. R.3,Akyabi K. S.3,Page C. G.4

Affiliation:

1. ExxonMobil Development Co.

2. National Drilling Co.

3. Zakum Development Co.

4. Exxon Neftegas Ltd.

Abstract

Abstract A workflow that combines optimization of the drill string and bottomhole assembly (BHA) design during well planning and then applies advanced surveillance tools to a well-trained drilling crew yields reduced vibrations, higher drilling rates, and less trouble cost. This methodology is based on the premise that an efficient drilling operation requires optimized tool designs, advanced diagnostics using real-time drilling parameters, and onsite training of efficient drilling practices and the proper use of rig control systems. The use of efficient modeling procedures to compare alternative drill string and BHA designs provides valuable insights into the string and tool selection process. A method to select the optimal stabilizer contact locations for the BHA tools helps to avoid lateral vibration dysfunctions, and a torsional vibration model can quickly evaluate the resistance of alternative string designs to harmful torsional stick-slip vibrations. Provided the proper hardware, a well-trained driller can be more effective with automated drilling performance evaluation tools that provide real-time drilling parameter recommendations based on optimizing Mechanical Specific Energy (MSE), torsional vibration stick-slip severity, and Rate of Penetration (ROP). BHA lateral vibrations modeling is field-proven and has been applied globally. One case study will show an application of the model to select a BHA design with specified rotary speed sweet spot. The torsional vibration model can be used in both a design process and in a real-time surveillance mode. In one case study, stick-slip vibrations were too severe to drill ahead with a tapered string design that was selected to lower the equivalent circulating density (ECD). The model helped identify the increase in stick-slip resistance obtained by substituting a portion of the smaller pipe with larger pipe. A real-time surveillance tool provides automated drilling performance analysis and makes recommendations to the driller on bit weight and rotary speed. The recommendations are based on the torsional vibration model results, operating in a surveillance mode, and the MSE and ROP. Rig control systems impact drilling dynamics and efficiency in ways that are not well understood by most drillers, and training on awareness and mitigation of these effects can avoid severe dysfunctions.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3