Immiscible Microemulsion Flooding

Author:

Healy Robert N.1,Reed Ronald L.1

Affiliation:

1. Exxon Production Research Co.

Abstract

Abstract Economical microemulsion flooding inevitably involves microemulsion phases that are immiscible with water, oil, or both. Oil recovery is largely affected by displacement efficiency in the immiscible regime. Therefore, it is pertinent to study this immiscible aspect in relation to variables that affect phase behavior and interfacial tension between phases. This is accomplished through core flooding experiments wherein microemulsions immiscible with oil and/or water are injected to achieve enhanced oil recovery. One advantage of such an immiscible microemulsion flood is that surfactant concentration can be small and slug size large, thereby reducing deleterious effects of reservoir heterogeneity; a disadvantage is that the temporary high oil recovery accompanying locally miscible displacement before slug breakdown is reduced. Final oil saturation remaining after lower, middle, and upper-phase microemulsion floods is studied as a function of salinity, cosolvent, temperature, and surfactant structure; and results are related to interfacial tension, phase behavior and solubilization parameters. A conclusion is that immiscible microemulsion flooding is an attractive alternative to conventional microemulsion processes. Oil recovery obtained from microemulsion slugs is correlated with capillary number based on what is called the controlling interracial tension. Physically, this means the least effective of the Physically, this means the least effective of the displacement processes at the slug front or rear determines the flood outcome. Finally, a screening procedure is developed that is useful for either immiscible or conventional microemulsion floods and that can reduce the number of core floods required to estimate oil recovery potential for a candidate microemulsion system. potential for a candidate microemulsion system Introduction This is the fourth in a sequence of papers dealing with miscible and immiscible aspects of microemulsion flooding. The first of these papers identified micellar structures above the binodal curve and showed how the region of miscibility could be maximized at the expense of the multiphase region, thereby prolonging locally miscible displacement. This was accomplished by varying salinity, and the notion of optimal salinity was introduced as that which minimized the extent of the multiphase region. Interfacial tensions within the multiphase region were measured and found to vary nearly three orders of magnitude, depending on WOR and surfactant concentration. Careful isothermal pre-equilibration of bulk phases was a requisite to all interfacial tension measurements. The second paper emphasized core flooding behavior and distinguished locally miscible displacement before slug breakdown, from immiscible displacement occurring thereafter. Fractional oil flow was correlated with capillary number and it was found that an effective immiscible displacement cannot be distinguished from the locally miscible case. Further, during an effective flood, the greater part of the oil was recovered during the immiscible regime. Finally, it was shown that micellar structure within the miscible region is not of itself an important variable. Having determined that the immiscible aspect of a microemulsion flood was important and dominant, the third paper dealt extensively with the multiphase region. Microemulsions were classified as lower-phase (1), upper-phase, (u), or middle-phase (m) in equilibrium with excess oil, excess water, or both excess oil and water, respectively. Transitions among these phases were studied and systematized as functions of a number of variables. Solubilization parameters for oil and water in microemulsions were introduced and shown to correlate interfacial tensions. The middle-phase was identified as particularly significant because microemulsion/excess-oil and microemulsion/ excess-water tensions could be made very low simultaneously. In this paper, the sequence is continued by introducing the notion of an immiscible microemulsion flood as one having an injection composition in the neighborhood of the multiphase boundary. SPEJ P. 129

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3