Nanoparticle Assisted Foam Stability Under SAGD Conditions

Author:

Maaref Sepideh1,Kantzas Apostolos1

Affiliation:

1. PERM Inc. TIPM Laboratory, Calgary, AB, Canada Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada

Abstract

Abstract Thermal oil recovery processes, and more specifically steam assisted gravity drainage (SAGD), is one of the two commercial methods to produce heavy oil. In the later stages of SAGD heat losses increase. One solution to improve heat losses in the steam chamber is to co-inject a foaming solution with non-condensable gases. It is expected that such a scheme will redirect steam towards heating oil and not the overburden. An appropriate foaming agent is required for successful implementation of a steam-foam process. Conventional laboratory techniques have provided some indication of foam stability with different types of surfactants but failed to match the reservoir conditions and time scale. Recently, the use of nanoparticles along with surfactants has gained attention as a method to stabilize foams under thermal operating conditions. The aim of this research is to investigate the thermal stability of foam under steam conditions (temperatures around 200 °C) using mixtures of different surfactants and silica nanoparticles. A series of foam stability tests were conducted at temperature ranges of 170 °C to 212 °C and pressures of 2.78 MPag and 4.22 MPag using two different anionic surfactants and four different bare and coated silica nanoparticles. The foamy solutions were prepared with a combination of different surfactants and nanoparticles, which were co-injected with N2 gas into a sand pack to generate foam at different temperatures and pressures. The generated foam was then transferred to a high pressure and high temperature visual cell and the foam half-life was measured as the indicator of its decay. It was observed that a small deviation from the dew point (decreasing the temperature or increasing the pressure) significantly improved foam stability. Addition of nanoparticles proved to be synergistic as the foam half-life near the steam dew point increased about four-fold compared to surfactant only foams. Among the tested nanoparticles, the use of polyethylene glycol (PEG) coated silica nanoparticles along with an anionic surfactant resulted in the highest foam stability near the steam dew point. To date, most of the foam stability tests have been conducted at temperatures below 200 °C with the focus on using surfactants. This research extended the foam stability tests to temperatures in excess of 200°C using mixtures of surfactants and nanoparticles. Although the foam stability still needs to be improved for reservoir-scale application, our screening methodology presents a realistic process of generating foam in a porous medium with nanoparticles and surfactants under a desired thermodynamic state for subsequent foam thermal stability testing.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3