Fate of Emulsifier in Invert Emulsion Drilling Fluids: Hydrolysis and Adsorption on Solids

Author:

Khramov Dimitri1,Barmatov Evgeny2

Affiliation:

1. Schlumberger

2. Schlumberger Cambridge Research

Abstract

Abstract Emulsifier concentration in SBM is an important factor of drilling fluid stability. Proper concentration of amidoamine emulsifier is imperative for controlling low fluid loss and maintaining emulsion stability. This study investigates the physical and chemical interactions between emulsifier and other additives and describes the processes by which emulsifier is depleted from the drilling fluid. Three main pathways of emulsifier consumption are identified: emulsifier adsorption on solids found in drilling fluids and low gravity solids (LGS), chemical degradation, and to stabilize the invert emulsion. Design of experiments model and analytical procedure based on 1H NMR (nuclear magnetic resonance) spectroscopy was used to quantify the required emulsifier concentration in Non-Aqueous Fluid system (NAF). Additionally, model systems were used to estimate the excess of emulsifier, evaluate the emulsifier losses due to alkaline hydrolysis at elevated temperature, and measure adsorption of emulsifier on barite and various LGS types. Calculations for emulsifier depletion based on model systems were correlated to performance of formulated drilling fluids for verification. Typical emulsifier requirement in high performance NAF is 8-12 pounds per barrel (ppb). Majority of the emulsifier is adsorbed on weighting agents (barite) and rheology modifiers (clays), which are used to formulate NAF, that contribute to their effective dispersion in the solution and control fluid rheology. The adsorption process is found to be sensitive to the emulsifier concentration, solids mineralogy, wetting agent and temperature. Analytical Langmuir-Freundlich isotherm was used to describe adsorption data and estimate the adsorption capacity of the system. The emulsifier degradation pathway is another important factor of emulsifier consumption; however, emulsifier degradation at 250°F is not significant. While NAF are generally run ‘rich’ to mitigate depletion and maintain fluid stability, adsorption onto minerals will become an issue especially at high LGS concentration. These results will be greatly beneficial in the further development of NAF drilling fluid formulations and will assist field engineers in understanding the effect excess emulsifier will have on the drilling fluid and enable them to more effectively control the fluid properties under variations in emulsifier and LGS concentration during drilling.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3