Identifying Reservoir Fluids by Wavelet Transform of Well Logs

Author:

Yue Wenzheng1,Tao Guo2,Liu Zhengwu3

Affiliation:

1. China University of Petroleum

2. Petroleum U. of China, Beijing

3. China Natl. Petroleum Corp.

Abstract

Summary The wavelet-transform (WT) method has been applied to logs to extract reservoir-fluid information. In addition to the time (depth)/frequency analysis generally performed by the wavelet method, we also have performed energy spectral analysis for time/frequency-domain signals by the WT method. We have further developed a new method to identify reservoir fluid by setting up a correlation between the energy spectra and reservoir fluid. We have processed 42 models from an oil field in China using this method and have subsequently applied these rules to interpret reservoir layers. It is found that identifications by use of this method are in very good agreement with the results of well tests. Introduction An important log-analysis application is determining reservoir-fluid properties. It is common practice to calculate the water and oil saturations of reservoir formations by use of electrical logs. With the development of well-logging technology, a number of methods have been developed for reservoir-fluid typing with well logs (Hou 2002; Geng et al. 1983; Dahlberg and Ference 1984). A recent report has also described reservoir-fluid typing by the T2 differential spectrum from nuclear-magnetic-resonance (NMR) logs (Coates et al. 2001). However, because of the interference from vugs, fractures, clay content, and mud-filtrate invasion, the reservoir-fluid information contained in well logs is often concealed. The reliability of these log interpretations is thus limited in many cases. Therefore, it is desirable to find a more reliable and consistent way of reservoir-fluid typing with well logs. In this paper, we present a new method using the WT for fluid typing with well logs. The WT technique was developed with the localization idea from Gabor's short-time Fourier analysis and has been expanded further. Wavelets provide the ability to perform local analysis (i.e., analyze a small portion of a larger signal) (Daubechies 1992).This localized analysis represents the next logical step: a windowing technique with variable-sized regions. Wavelet analysis allows the use of long time intervals, where more-precise low-frequency information is wanted, and shorter intervals, where high-frequency information is needed. Wavelet analysis is capable of revealing aspects of data that other signal-analysis techniques miss: aspects such as trends, breakdown points, discontinuities in higher derivatives, and self-similarity. In well-logging-data processing, wavelet analysis has been used to identify formation boundaries, estimate reservoir parameters, and increase vertical resolution (Lu and Horne 2000; Panda et al. 1996; Jiao et al. 1999; Barchiesi and Gharbi 1999). For data interpretation, however, the identification of hydrocarbon-bearing zones by wavelet analysis is still under investigation. In this study, we have developed a technique of wavelet-energy-spectrum analysis (WESA) to identify reservoir-fluid types. We have applied this technique to field-data interpretation and have achieved very good results.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3