Affiliation:
1. Colorado School of Mines
Abstract
Abstract
High and efficient deliverability of stimulated reservoir volume through a hydraulic fracturing treatment relies on three segments: fluid flow from matrix to the interface between fracture and matrix media, fluid-rock interaction at the fracture-matrix interface, and conductivity of fracture network. Thus, fluids and salt exchange between matrix and fracture network are critical and worth detailed investigation. Moreover, matrix imbibition as an important EOR mechanism has been extensively studied but the focus was mostly given to capillary effect. However, for shale, due to the pore structure and clay content, some physico- or electro-chemical forces at molecular level cannot be overlooked anymore, such as osmosis.
A multi-mechanistic numerical shale matrix imbibition model is developed. The model takes into account dynamic water movement caused by capillary pressure and osmotic pressure as a function of water saturation and salt concentration, respectively. The rock matrix is considered as the mixture of two different components, one with small nano/micro-pores and semi-permeable membrane property and the other having larger meso-pores. The model properly simulates water and salt transportation occurring across the matrix-fracture network contact surface driven by capillarity, osmosis, and salt diffusion. To honor the physics, the salt/ions concentration equation differs from previous work by removing the osmosis component and a new membrane efficiency coefficient is defined and properly incorporated in the model.
Spontaneous imbibition test results were used for matching and validation purposes. The simulation results well explained laboratory high-salinity water imbibition curve, which can be divided into three processes. Initially, a capillary driven imbibition sucks high salt-concentration water into matrix near the matrix-fracture contact surface. However, due to the significant salinity contrast between imbibed fluids and in-situ matrix salinity, a drainage process can be induced. Eventually, as salinity difference decreases and osmosis is weakening, final imbibition stage starts. This model provides a basis for laboratory measurements interpretation and brings some insights to reveal the underlying mechanisms for field post-frac flow-back behavior.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献