Nonempirical Apparent Permeability of Shale

Author:

Singh H.1,Javadpour F.1,Ettehadtavakkol A.1,Darabi H.1

Affiliation:

1. University of Texas at Austin

Abstract

Summary Physics of fluid flow in shale reservoirs cannot be predicted from standard flow or mass-transfer models because of the presence of nanopores, ranging in size from one to hundreds of nanometers, in shales. Conventional continuum-flow equations, such as Darcy's law, greatly underestimate the fluid-flow rate when applied to nanopore-bearing shale reservoirs. As a result of the existence of nanopores in shales, the molecular mean free path becomes comparable with the characteristic geometric scale, and we hypothesize that under this condition, Knudsen diffusion, in addition to correction for the slip boundary condition, becomes the dominant mechanism. Recently, a few models have been developed that use various empirical parameters to account for these modifications (Javadpour 2009; Civan 2010; Darabi et al. 2012). This paper aims to provide a different approach to modeling apparent permeability in shale reservoirs. The proposed model is analytical, free of any empirical coefficients, and has been derived without invoking the assumption of slip flow at the pore wall. Our model of apparent permeability represented by a single analytical equation, depends only on pore size, pore geometry, temperature, gas properties, and average reservoir pressure. The proposed model is valid for Knudsen numbers less than unity and it stands up under the complete operating conditions of a shale reservoir. Our model reasonably predicts results as reported by other models. Finally, the model shows that pore-surface roughness and mineralogy have a negligible influence on gas-flow rate, whereas pore geometry and pore size play a significant role in the proportion of diffusion in total flow rate. Our study shows that a combination of Darcy flow and Knudsen flow—ignoring the Klinkenberg effect—can describe gas flow for a range of Knudsen flow applicable to a shale-gas system.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 160 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3