New Insights into Mass Transfer when Using the Rotating Disk Apparatus for Newtonian and Non-Newtonian Fluids

Author:

Kotb A.1,Nasr-El-Din H. A.1

Affiliation:

1. Texas A&M University

Abstract

Summary The rotating disk apparatus (RDA) is used to study reaction kinetics. However, the current equations used to interpret the results from the RDA make oversimplifying assumptions. Some of these assumptions are not met in practice, yet no work has been done to study their impact on the mass transfer of the proton (H+) to the disk. The objectives of the current work are threefold: study flow regimes under the rotating disk in the RDA for Newtonian and non-Newtonian fluids, investigate the impact of the reactor boundaries on the mass transfer of H+ to the disk in Newtonian fluids, and identify the dimensions of the reactor that minimize this impact. The mass transfer of the H+ was compared between different dimension reactors. Contrary to information reported in the literature, both the diameter of the reactor and the axial distance between the base of the disk and the bottom of the reactor have an impact on the rate of mass transfer of H+ to the disk. Moreover, the velocity profiles in the reactor showed three flow regimes: fully axisymmetric, fully asymmetric flow, and intermediate flow. These different regimes varied depending on the axial distance between the base of the disk and the bottom of the reactor, the diameter of the reactor, the rotational speed of the disk, and the kinematic viscosity of the reacting fluid.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3