The Differentiation Method in Rheology: III. Couette Flow

Author:

Savins J.G.1,Wallick G.C.1,Foster W.R.1

Affiliation:

1. Socony Mobil Oil Co., Inc.

Abstract

Abstract The theory of the differentiation method for the Couette flow experiment is reviewed. Particular attention is given to the requirements on data analyses in the case of the class of non-Newtonian materials described as viscoplastics, i. e., materials characterized by a yield point or yield stress. Here, changes in boundary conditions arise when the shearing stress attains a critical value with the result that the form of the basic integral equation for Couette flow is determined by the flow conditions existing during the measurement. Introduction In the preceding papers in this series, the salient features of the differentiation method of rheological analysis in Poiseuille-type flow were discussed. It was shown that a dual differentiation- integration method analysis of the Poiseuille flow of idealized generalized Newtonian and visco-plastic models could be used to develop a spectrum of highly sensitive response patterns in terms of certain characteristic derivative functions. These functions were shown to optimize the selection of the most appropriate functional relationship between f(p) and p from the Poiseuille flow experiment. The present paper reviews the theory of the differentiation method as applied to the equally important Couette flow experiment. We will also discuss the range of variables over which the basic integral equation for Couette flow is applicable when the non-Newtonian material is of the viscoplastic type, i.e., characterized by a yield point or yield stress. THEORY Having described the application of the differentiation method to Poiseuille-type flow in the preceding papers, we now proceed to the case where the test liquid is confined to the annular space between coaxial cylinders of length L, one of which is in motion, i.e., Couette flow, formulating the basic integral equation after the method of Mooney. The observed kinematical and dynamical quantities are the angular velocityand the torque T. Here, the one nonvanishing component of the shear-rate tensor is ........................(1) and the corresponding component of the shearing-stress tensor at any point r is given by ..........................(2) The shearing stresses at the inner surface of radius R(1) and the outer surface of radius R(2) are related by .................(3) Combining Eqs. 1, 2 and 3, letting = 0 at p = p1 and = at p = p2 and integrating yield .........................(4) Note that the definite integral has a finite lower limit. Differentiating Eq. 4 with respect to p1, following the rule of Leibnitz (i.e., in Eq. 11 of Ref. 1), gives a difference equation in the desired function ..................(5) This result was initially obtained by Mooney who used it as a starting point for an approximate solution. Several other approximate solutions of the difference equation have been described, the principal results of which are described in the succeeding sections. The interested reader is referred to the original papers for the details. SPEJ P. 14^

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3