Near-Wellbore Deposition of High Conductivity Proppant to Improve Effective Fracture Conductivity and Productivity of Horizontal Well Stimulations

Author:

Pearson C. Mark1,Fowler Garrett2,Stribling K. Michelle3,McChesney Jeromy1,McClure Mark2,McGuigan Tom4,Anschutz Don3,Wildt Pat3

Affiliation:

1. Liberty Resources

2. ResFrac

3. Proptester

4. US Ceramics

Abstract

Abstract In conventional formations it has long been established that designing fracture treatments with improved near-wellbore conductivity generates improved production and economic returns. This is accomplished by pumping treatments with increased proppant concentration in the final stages (the traditional proppant ramp design), and in some cases by changing proppant size or type in the final stages to effect greater near-wellbore conductivity - commonly referred to as a "tail-in" design. These designs overcome the impacts of greater near-wellbore pressure loss during production caused by flow concentration in the near-wellbore region compared to distal parts of the fracture. For vertical wells and crosslinked fracture fluid treatments, the fluid flow and suspended proppant transport is effectively "piston" flow and it was a relatively straight forward matter to engineer the near-wellbore region with a tail-in of higher conductivity proppant. For unconventional reservoirs, with multi-stage horizontal completions using slickwater fluids, it has not been obvious how best to create this improved near-wellbore conductivity and most operators have employed a "one size fits all" strategy of pumping a single proppant type unless there was perhaps a need for flowback control in which case a resin coated proppant might be used as a tail-in. This paper reports the results of two projects to address the engineering of the near-wellbore fracture conductivity for horizontal well fracturing. Firstly, a series of laboratory tests were run in a 10 ft. × 20 ft. slot wall to visualize near-wellbore proppant duning and layering associated with both "lead-in" and "tail-in" designs. The impacts of these depositions were then quantified using a 3D hydraulic fracture / reservoir simulation code for a variety of stimulation designs in the Middle Bakken and Three Forks formations of the Williston Basin. The results of this work show that well stimulation treatments in liquid-rich unconventional formations would benefit from a combination of small (5 to 10%) lead-ins and tail-ins of high conductivity ceramic proppant. This minimizes the effects of radial flow convergence in the transverse fractures generated from the horizontal well and maximizes the economic benefit of the well stimulation. In addition to paying out the small cost increase in only 1 to 2 months, the proppant bands of higher conductivity ceramic help mitigate the effects of longer-term sand crushing and degradation on near-wellbore plugging and thus increases 3-year cumulative free cash flow and the Estimated Ultimate Recovery (EUR) of the well.

Publisher

SPE

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3