Well Control Simulator: Enhancing Models with Compositional PVT Models and Kinetics

Author:

Bjørkevoll Knut S.1,Skogestad Jan Ole1,Frøyen Johnny1,Linga Harald1

Affiliation:

1. SINTEF Petroleum Research/DrillWell

Abstract

Abstract Details of the interaction between natural gas and oil in drilling fluids currently not taken into account, will in extreme cases be significant for the safety of drilling and well control operations. The paper describes such effects, in particular time dependence (kinetics) and compositional PVT with dense phase included. The importance of validation and tuning of PVT calculations, even when using state-of-art tools, is demonstrated by integrating new methods in a well control simulator. We consider sub-models for kinetics (time dependence of gas dissolution and boiling) and compositional PVT for the drilling fluid-natural gas mixture, and study different effects and assumptions numerically by integration in a well control simulator. Available laboratory data are used for model development and tuning of existing software. The dense phase may be important to consider in HPHT wells, where the conditions allow for the drilling fluid-gas mixture to exceed the critical point. This influences the gas absorption capability of the drilling fluid, as well as the density. The paper illustrates the impact of kinetics and improved PVT calculations through a sensitivity analysis using realistic well and fluid data. Two specific base-oils, a refined mineral oil and a linear paraffin, are used in combination with methane gas. The simulations show how kinetic effects can be important in some cases, both for early interpretation of a kick and for the response seen at surface as gas approaches and enters topside equipment. Furthermore, it demonstrates that dense phase effects can be significant, and that even state-of-art PVT software requires tuning when used with new combinations of oil-base fluids and hydrocarbon gases. Although the effects discussed are small compared to safety margins for many wells, ignorance may cause drilling teams to run into severe risks without knowing in advance for other wells. Combining advanced PVT models capable of representing dense phase behavior and a kinetics model with hydraulic flow modelling represents a leap forward in simulation of well control events. In addition, the importance of tuning adds valuable knowledge. These elements enable earlier detection and safer handling, thus increasing the safety on the rig.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3