The Viability of Gas Injection EOR in Eagle Ford Shale Reservoirs

Author:

Atan Safian1,Ajayi Arashi1,Honarpour Matt1,Turek Edward1,Dillenbeck Eric1,Mock Cheryl1,Ahmadi Mahmood2,Pereira Carlos2

Affiliation:

1. BHP

2. MI3 Petroleum Engineering Corp.

Abstract

Abstract Gas Injection, Huff-and-Puff Enhanced Oil Recovery (EOR) technique have the potential to improve liquid hydrocarbon recovery in ultra-tight, unconventional reservoirs. This paper studies the technical and economic viability of this EOR technique in Eagle Ford shale reservoirs using natural gas injection – generally after some period of primary depletion, typically through long horizontal reach wells that were hydraulically fractured. To achieve this, three primary steps were undertaken: First, a series of multi-well, compositional simulation models were constructed, calibrated with lab data, and history matched for an extended production period. This effort characterizes a set of equiprobable combinations of fracture and matrix properties, as well as the parametric description of the stimulated reservoir volume. Second, these history matched models were then used to numerically simulate the Gas Injection Huff-and-Puff EOR process to determine a set of optimized operational variables (operating pressures, injection pressure, cycle durations, the corresponding injection rate, and slug size). The results were also sensitized to the effect of geomechanics, containment, as well as the effect of diffusion. The primary source of information that feeds the sensitivity analysis was derived from laboratory work investigating the EOR processes at the core scale. The third and last step, economic analysis was performed using calibrated rate profiles to assess the impact of initial yield and the amount of depletion on value. Resulting analysis provided insight to the economic viability of the EOR deployment at field-scale. Results show that the recovery factor uplift, all things being equal, is a function of the original yield, the amount of depletion, and the minimum operating pressure during the production cycles. In reality, however, equally as critical to the success of an EOR project is the formulation of the deployment strategy - the timing of the development start (forecasted price environment), pad selection, compressor scheduling, injection-soak-production durations, surveillance plans, and mitigation strategies (for poor containment and inefficient compressor utilization). The workflow utilized in this paper both characterizes the uncertainties in an EOR project in the Eagle Ford and provides insight into operating conditions and surveillance recommendations. This is the key for a successful demonstration pilot which can then lead to a field-scale EOR deployment.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3