Log-Derived Evaluation of Shaly Clastic Reservoirs

Author:

Fertl Walter H.1

Affiliation:

1. Dresser Industries Inc.

Abstract

Summary. Reliable evaluation of hydrocarbon resources in shaly clastic reservoir rocks is an important, although difficult, task. This paper briefly reviews the wide variety of interpretive models that has evolved. The discussion focuses on digital shaly-sand evaluation techniques based on the Waxman-Smits model to provide information on total and effective reservoir porosity and fluid distribution, silt content, volume, type (smectite, illite, and chlorite/kaolinite), and distribution modes (dispersed, laminated. and structural) of the clay minerals present in subsurface formations. Case studies from different geologic environments present field experiences in clastic reservoir rocks that exhibit a wide range of porosity and permeability and various amounts, types, and distribution modes of clay minerals. A log-derived formation damage index is also discussed. Finally, emphasis is placed on improved reservoir evaluation of thinly laminated shale/sand intervals through the integration and enhancement of resistivity data, short-spaced dielectric measurements, and/or analytical data-blocking routines. Introduction Few hydrocarbon-bearing clastic reservoirs are essentially free of clay minerals. The significant effect of these minerals on geophysical log responses is well recognized. Ref. 1 represents the first modern collection and comprehensive review of the vast number of technical papers important to the evaluation of shaly clastic reservoir rocks based on geophysical well logging measurements and associated interpretive concepts. For example, Fig. 1 illustrates the generalized response of the various porosity logs to shaliness and hydrocarbon effects. The basic objective in shaly-sand formation evaluation then is a realistic log-derived description of reservoir quality in terms of petrophysical parameters, type, and volume of hydrocarbon resources in place, and expected production behavior. Such evaluation methods may be simple empirical rules, standard analysis concepts, digital wellsite "quick look" techniques, or advanced digital interpretive models used in single-well or multiwell field studies. Basic Considerations In his classic empirical equation, Archie related formation conductivity, formation-water conductivity, and the formation resistivity factor (a function of porosity and cementation exponent) to the formation-water saturation. Archie's equation applies satisfactorily to clean sands, whereas the presence of clay minerals (amount, type, and distribution modes) has a detrimental effect on water saturation calculations. While more than 30 water saturation models have been proposed for shaly-sand reservoir evaluation, most of the major developments can be classified in one of four categories (see Table 1 ). Worthington recently discussed these categories and the evolution of shaly-sand concepts in reservoir evaluation. Concepts based on clay volume, V, exhibit two constraints: being inexact and requiring reliable log-derived V, estimates. 3 The latter, in itself, is no minor task (see Table 2). The most common clay minerals, their chemical composition, matrix density, hydrogen index (HI), cation exchange capacity (CEC), and distribution of potassium, thorium, and uranium as shown by natural gamma ray spectral information are summarized in Table 3. Because a typical shaly clastic reservoir rock and/or a typical shale formation may contain different clay minerals in various amounts, no single clay parameter can be used universally to characterize a specific type of argillaceous sediment or shaly reservoir rock. With the advent of the Waxman-Smits model, reliable water saturation calculations are provided for reservoirs with drastically different clay contents and over a wide range of formation-water salinities. The emphasis is on log-derived evaluation of CEC per total PV, Qv, from specific single or combined well logging parameters. Such QV, estimates from well logs can be based on the spontaneous potential curve, gamma ray, natural gamma ray spectral data (potassium, thorium, and uranium), dielectric measurements, reservoir porosity, gamma ray/reservoir porosity, clay composition/reservoir porosity, etc. It suffices here to state that such correlations faciliLate a continuous computation of CEC and Q v values for a given formation in a geological section or localized area. These techniques, however, all require both well logging and core data over the interval of interest because no single unique mathematical transform can be expected. To overcome these limitations, advanced digital shalysand analysis techniques, such as CLASS and CLAYS, have recently been developed. Based on the WaxmanSmits model and variations in the basic properties of various clay minerals, CLASS and CLAYS analyses provide information on total and effective porosity; total and effective fluid distribution silt volume; amounts, types, and distribution modes of clay minerals present, and reservoir productivity. Details of these methods can be found in Refs. 6 and 7. JPT P. 175^

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3