Physics-Based and Data-Driven Polymer Rheology Model

Author:

Abdullah M. B.1ORCID,Delshad M.2ORCID,Sepehrnoori K.2ORCID,Balhoff M. T.2,Foster J. T.2,Al-Murayri M. T.3

Affiliation:

1. The University of Texas at Austin; Kuwait University (Corresponding author)

2. The University of Texas at Austin

3. Kuwait Oil Company

Abstract

Summary Polymer flooding is a common enhanced oil recovery (EOR) method used to increase aqueous phase sweep efficiency by increasing viscosity. Estimating polymer viscosity for given reservoir conditions (i.e., oil viscosity, temperature, and brine composition) requires intensive laboratory work. There are existing empirical models to estimate polymer bulk rheology without prior laboratory work; however, they have many coefficients, simple brine composition, and lack physics-based regression boundaries. This study benchmarks the existing polymer empirical and machine learning (ML) models against a new data-driven model with some physics basis for common synthetic polymers. We cover a broad range of polymer concentrations, temperature, salinity, and hardness with an upper limit of 5,000 ppm, 120℃, 290,000 ppm, and 33,000 ppm, respectively. The data were preprocessed through data analytics techniques, and a model was developed with some physics basis by fitting Martin’s equation for Carreau model coefficients. Our regression boundaries obey flexible polymers’ physical and laboratory behavior. We benchmarked the bulk rheological model with existing models in the literature. We used the published models’ coefficients and then tuned their coefficients for our data set for a fair comparison. We then investigated ML as a predictive tool without compromising overfitting the data using the simplest ML model (linear regression) all the way to artificial neural network (ANN) and hybrid ML models. This is the first study that comprehensively benchmarks polymer rheology models and proposes a simple, least number of coefficients, and tunable polymer-rheology model. We provide a predictive bulk rheology model that enables the user to accurately predict polymer viscosity without laboratory measurements and for a wide range of temperatures and brine compositions. Moreover, our study includes the recently common polymer SAV-10 that was not previously studied. We present a simple water viscosity model for a broad brine salinity and temperature range. Our study shows that ML techniques might provide deceptively high accuracy for small data sets, unless due diligence is done to avoid a high-variance model.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Reference78 articles.

1. Viscosity of Aqueous Electrolyte Solutions at High Temperatures and High Pressures. Viscosity B-Coefficient. Sodium Iodide;Abdulagatov;J Chem Eng,2006

2. Developing a Robust Surrogate Model of Chemical Flooding Based on the Artificial Neural Network for Enhanced Oil Recovery Implications;Ahmadi;Math Probl Eng,2015

3. Experimental Investigation of Polymer Injectivity and Retention under Harsh Carbonate Reservoir Conditions;Alfazazi;J Pet Sci Eng,2020

4. Development of a Novel Model to Predict HPAM Viscosity with the Effects of Concentration, Salinity and Divalent Content;Al-Hamairi;J Petrol Explor Prod Technol,2020

5. Integrating Well Log Interpretations for Lithofacies Classification and Permeability Modeling through Advanced Machine Learning Algorithms;Al-Mudhafar;J Petrol Explor Prod Technol,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3