Quantitative Assessment of CO2 Mineral Trapping Capacity in Presence of Sealing Fault in Carbonate Sequences: A Numerical Approach

Author:

Fathy Ahmed1,Arif Muhammad1,Adila Ahmed Sami1,Raza Arshad2,Mahmoud Mohamed2

Affiliation:

1. Khalifa University of Science and Technology

2. King Fahd University of Petroleum & Minerals

Abstract

AbstractMineral trapping is believed to be the safest and the most secure CO2 sequestration technique where the injected CO2 could be mineralized in the long-term (exceeding 102 - 103 years) geologically within subsurface formations. Nevertheless, the high complexity associated with CO2 mineral trapping capacity predications obscures the in-depth understanding of CO2 mineralization. In this study, a numerical simulation is adopted to demonstrate the impact of carbonate mineralogy in presence of a sealing fault on CO2 mineral trapping capacity.Field-scale CO2 pilot topographic model for three distinct carbonate minerals is simulated to depict the mineral trapping capacity. Thus, realistic petrophysical parameters, reservoir characteristic curves, and other in-situ conditions are upscaled to mimic carbonate formations. Thereafter, the amount of CO2 mineralized is estimated for compositionally distinct reservoirs. Additionally, the effect of injection pressure on CO2 mineralization is assessed upon precipitation/dissolution kinetics calculations. Moreover, the effects of well placement and perforation depth on mineral trapping potential of calcite, dolomite, and siderite dominant reservoirs are assessed.The mineral trapping capacities computed show that increasing injection pressure (base injection pressure to 1.5*base injection pressure) monotonically increased the mineral trapping capacities for calcite and dolomite. However, siderite seems slightly insensitive to the injection pressure increase. This monotonic trend is attributed to enhanced radial displacement and restricted plume migration upward as the injection pressure increases. Moreover, proper CO2 injector placement showed significant enhancement in mineral trapping capacity especially if the injector is near to the fault plane on the leaking side. This study provides in-depth theoretical understanding of the mineralogy effect on CO2 mineralization potential in faulty carbonate sequences. This is driven by the insignificance interest mineral trapping has gained over the years compared to other trapping mechanisms. This is because of the extremely long storage duration needed for mineral trapping to reach its maximum potential. Importantly, the results suggest that CO2 mineralization within carbonate reservoirs immobilize CO2 – thus assisting in stable and long-term permanent storage.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3