Abstract
Abstract
We present a methodology of allocating gas rate and associated water to each individual layer using temperature measurements and total surface production of gas and water. This paper consists of two parts. In part one; we propose an analytical forward model for wellbore temperature response under two-phase production in a multilayer geometry, using a nodal representation of the well. This model accounts for the formation geothermal gradient, steady-state gas-water flow in the wellbore, friction loss and Joule-Thomson effect in the wellbore, contrast in the thermal and physical properties of gas and water, wellbore heat losses due to unsteady heat conduction in the earth, and the mixing of the fluid streams of contrasting temperature. The second part shows the solution technique used to allocate the gas and water rate for each layer using the genetic algorithm and the constructed software by knowing the temperature measurements inside the wellbore and by using the previously derived forward model for temperature response along with commercial software packages used to estimate the pressure loss required by the temperature forward model.
Two synthetic cases are used to test the validity of the new developed forward model; the first one is account for a well that produces from a single layer, while the second one produces from multilayer well in which the temperature in the wellbore and production rate is known. The developed model is applied to calculate the temperature profile inside the wellbore. The calculated profile is compared with the actual profile. The results showed that the new developed model is valid and reliable.
The practical implementation of the new developed production allocation model is examined on data from two actual gas wells with temperature measurements taken from Production logging tools recorded in these wells. The results showed that the model succeeded to accurately allocate the flow rate of gas and water phase for the multilayer producing wells based only on the temperature measurements inside the well bore and the total surface rates.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献