Real-Time Production Optimization of Steam-Assisted-Gravity-Drainage Reservoirs Using Adaptive and Gain-Scheduled Model-Predictive Control: An Application to a Field Model

Author:

Patel Rajan G.1,Prasad Vinay1,Trivedi Japan J.1

Affiliation:

1. University of Alberta

Abstract

Summary Steam-assisted gravity drainage (SAGD) is a thermal-recovery process to produce bitumen from deep oil-sands deposits. The efficiency of the SAGD operation depends on developing a uniform steam chamber and maintaining an optimal subcool (difference in saturation and actual temperature) along the length of the horizontal well pair. Heterogeneity in reservoir properties might lead to suboptimal subcool levels without the application of closed-loop control. Recently, model-predictive control (MPC) has been proposed for real-time feedback control of SAGD well pairs based on real-time production, temperature, and pressure data along with other well and surface constraint information; however, reservoir dynamics has been represented using extremely simplified and unrealistic models. Because SAGD is a complex, spatially distributed, nonlinear process, an MPC framework with models that account for nonlinearity over an extended control period is required to achieve optimized subcool and steam conformance. In this research, two novel work flows are proposed to handle nonlinear reservoir dynamics in MPC. The first approach is adaptive MPC, and includes continuous re-estimation of the model at each control interval. This allows the evolution of the coefficients of a fixed-model structure such that the updated system-identification model in the MPC controller reflects current reservoir dynamics adequately. Another approach, gain-scheduled MPC, decomposes the subcool-control problem in a parallel manner, and uses a bank of multiple controllers rather than only one controller. This ensures effective control of the nonlinear reservoir system even in adverse control situations by using appropriate variations in input parameters based on the operating region. The work flows are implemented using a history-matched numerical model of a reservoir in northern Alberta. Steam-injection rates and liquid-production rate are considered input variables in MPC, constrained to available surface facilities. The well pair is divided into multiple sections, and the subcool of each section is considered an output variable. Results are compared with actual field data (in which no control algorithm is used), and are analyzed on the basis of two criteria: (1) Do all subcools track the set point while maintaining stability in input variables? and (2) Does the net present value (NPV) of oil improve with adaptive and gain-scheduled MPC? In general, we conclude that both adaptive and gain-scheduled MPC provide superior tracking of subcool set points and, hence, better steam conformance caused by adequate representation of reservoir dynamics by re-estimation of coefficients and multiple controllers, respectively. In addition, the results indicate stability in input parameters and improvement in economic performance. NPV is improved by 23.69 and 10.36% in case of adaptive and gain-scheduled MPC, respectively. The proposed work flows can improve the NPV of an SAGD reservoir by optimizing the well-operational parameters while considering constraints of surface facilities and minimizing environmental footprint.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3