New Correlation to Predict the Optimum Surfactant Structure for EOR

Author:

Solairaj Sriram1,Britton Christopher1,Lu Jun1,Kim Do Hoon1,Weerasooriya Upali1,Pope Gary A.1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract It is well known that the oil recovery efficiency of chemical EOR depends on microemulsion phase behavior and interfacial tension (IFT). The surfactants needed to obtain good phase behavior and ultra-low IFT vary greatly with oil characteristics and reservoir conditions. Hence, it is often necessary to test many surfactant formulations before finding a highly effective one. Based on both sound principles and extensive experience, one would expect to find a relationship between the optimum surfactant structure, the oil characteristics, the brine, and the temperature. Salager's equation (Salager et al., 1979, Anton et al., 2008) shows it is possible to correlate some of these variables to classical surfactant structure. We now have many new surfactants with widely different structures and many more good formulations with a wider range of oils, temperature and so forth. Thus, it becomes imperative to study the underlying trend and to identify the most important variables affecting the optimum surfactant structure. A new correlation has been developed using an extensive data set taking into account the effect of propylene oxide number (PON), ethylene oxide number (EON), temperature, brine salinity and the equivalent alkane carbon number (EACN) of the oil. The new correlation will help in identifying the most important variables and also to improve our understanding of the relationship among variables affecting optimum surfactant structure. In particular, the new equation can be used to predict the optimum carbon number of the surfactant hydrophobe. Results show that larger hydrophobes are needed as either the temperature or the equivalent alkane carbon number (EACN) of the oil increases. The surfactant formulations used for this study include mixtures of sulfate, sulfonate, carboxylate and non-ionic surfactants. This is a new and highly significant advance in the optimization of chemical EOR processes that will greatly reduce the time and cost of the effort required to develop a good formulation as well as to improve its performance.

Publisher

SPE

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3