Experimental Study of Co-Injection of Potential Solvents with Steam to Enhance SAGD Process

Author:

Ardali M..1,Mamora D. D.1,Barrufet M..1

Affiliation:

1. Texas A&M University

Abstract

Abstract Steam-Assisted Gravity Drainage (SAGD) is the preferred in-situ technology to recover heavy oil and bitumen from Canadian reservoirs. It is commercially proven, delivers high oil rates and high ultimate recoveries. Given the large energy requirement and the volume of emitted greenhouse gases from SAGD process, there is a strong motivation to develop enhanced oil recovery processes with lower energy and emission intensities. Addition of potential alkane solvents to steam in processes such as ES-SAGD can reduce the high use of energy and green-house emissions in SAGD. Potential hydrocarbon additives provide an additional means to raise oil phase mobility beyond that achieved by heat. Numerous simulation studies are published on the effect of hydrocarbon additives on SAGD process but few experimental results exist in public domain. Often, Conflicting results exist both in simulation studies and even field tests. In addition, numerical simulations are unable to fully capture the mechanism of hybrid steam solvent processes. This paper summarizes experimental results of addition of potential solvents to steam in SAGD process. N-hexane was selected as the preferred additive to be co-injected with the steam and the experimental result are compared with pure steam injection process. Experiments were conducted using a scaled two dimensional cylindrical model. Peace River Bitumen samples were used to conduct the experiments at 80 psia. Experimental results were analyzed to determine the key parameters involved in solvent assisted SAGD processes. Experimental results confirmed the effectiveness of hydrocarbon additives to enhance SAGD process. Co-injection of potential solvents led to accelerated oil production rate, higher oil recovery and lower energy to oil ratio.

Publisher

SPE

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3