Conformance Control Treatments for Water and Chemical Flooding: Material Screening and Design

Author:

Glasbergen Gerard1,Abu-Shiekah Issa1,Balushi Sameer2,Wunnik John van2

Affiliation:

1. Shell Global Solutions International

2. PDO

Abstract

Abstract Heterogeneities in the reservoir can result in poor sweep efficiency during water and chemical floods. In many cases the sweep efficiency is improved significantly when changing to polymer flood. However, in the presence of very high conductive features polymer by itself may not be sufficient and result in undesired polymer production. Diversion of the flow to oil saturated regions and minimization of polymer production is then desired. In the presence of cross-flow the best option is placing a (chemical) plug deep in the reservoir. Adding a second component to the injection polymer stream that can react with the polymer to form a cross-linked gel is then an effective solution. However controlled placement and triggering of the reaction is very challenging. In this paper we will present the results of static bulk measurements and dynamic core flooding experiments that were performed to identify cross-linked polymer systems. The polymers in the system are the typical high molecular weight partially hydrolyzed polyacrylamide (HPAM) polymers used in polymer flooding projects. The experimental work is focused on understanding and controlling the gelation time to enable proper placement and triggering at any given distance from the injectors. Parameters of investigation included temperature, brine composition, polymer concentration and rock mineralogy. The main parameters affecting the gelation process and possible failure mechanisms were identified. For given conditions, retardation of gelation time varying from few days up to several months could be designed. The learning from the experimental results can be used for improved material selection and design for other chemical and water flooding.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3