An Integrated Wells to Process Facility Model for Greater Burgan Oilfield

Author:

Desai Sameer Faisal1,Al Jadi Issa1,Al-Ghanim Wafaa1,Franco Francy Milena2,Khor Siew Hiang2,Zhang Qiong Michael2

Affiliation:

1. Kuwait Oil Company

2. Schlumberger

Abstract

Abstract This paper discusses the development of a truly integrated asset model for the Greater Burgan oilfield in Kuwait linking multiple wells, pipelines networks, and process facilities for achieving integrated operational excellence in the South and East Kuwait asset of Kuwait Oil Company. A water handling facility model comprising of two effluent water disposal plants, a crude oil export pipeline network and a water injection network model are also incorporated into this integrated asset model. The main objective behind the development of this integrated asset model is to enable better asset management, faster and more precise decision making and enhancing the hydrocarbon flow path all the way from the reservoir till the export point. The new integrated asset model was developed from a model centric approach involving construction and calibration of over 1500 well models. All wells were then linked to their network models comprising of pipelines totaling more than 10,000 km. The well and network models were integrated with the respective process facility models of the 14 gathering centers located in the field and finally tied to the crude export, water disposal and water injection systems. The results of the integrated wells to process facility models such as pressure gradient, temperature gradient and erosional velocity ratio gradient across the production network can be plotted or visualized on the Geographic Information System (GIS) map. Integration of the vast number of wells and network models with the 14 crude processing facilities in a single IAM platform provides comprehensive understanding of flowing paths spread across the giant Burgan field and proves its utility as an effective flow assurance tool. The IAM platform also provides engineers and management an effective tool for analyzing well potential, identifying under-performing wells, spotting clusters of high water cut wells, singling out back pressure effected wells and locating system constraints. Thereby the proven IAM provides valuable information for effective production optimization and long-term surface facility development plans. The IAM platform is designed for use by Reservoir, Production, and Process Engineers as well as Operations, Business Development, and Asset Management teams. Engineers can evaluate various scenarios to improve production and operation performance such as choke increase or decrease, re-routing wells between manifolds, adding new wells into the system, and decision on slots for connecting new wells to the plant headers. The IAM also enables asset teams to forecast injection rates, review the impact on the entire injection network in terms of pressure distribution, and conduct "what if" scenarios leading towards complete asset optimization.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3