CO2-Soluble, Nonionic, Water-Soluble Surfactants That Stabilize CO2-in-Brine Foams

Author:

Xing D..1,Wei B..1,McLendon W..1,Enick R..1,McNulty S..2,Trickett K..3,Mohamed A..3,Cummings S..3,Eastoe J..3,Rogers S..4,Crandall D..5,Tennant B..5,McLendon T..6,Romanov V..6,Soong Y..6

Affiliation:

1. US Department of Energy National Energy Technology Laboratory's Regional University Alliance and University of Pittsburgh

2. University of Pittsburgh

3. University of Bristol

4. ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory

5. URS Washington Division, US Department of Energy National Energy Technology Laboratory

6. US Department of Energy National Energy Technology Laboratory

Abstract

Summary Several commercially available and a few experimental, nonionic surfactants were identified that are capable of dissolving in carbon dioxide (CO2) in dilute concentration at typical minimum- miscibility-pressure (MMP) conditions and, upon mixing with brine in a high-pressure windowed cell, stabilizing CO2-in-brine foams. These slightly CO2-soluble, water-soluble surfactants include branched alkylphenol ethoxylates, branched alkyl ethoxylates, a fatty-acid-based surfactant, and a predominantly linear ethoxylated alcohol. Many of the surfactants were between 0.02 to 0.06 wt% soluble in CO2 at 1,500 psia and 25°C, and most demonstrated some capacity to stabilize foam. The most- stable foams observed in a high-pressure windowed cell were attained with branched alkylphenol ethoxylates, several of which were studied in high-pressure small-angle-neutron-scattering (HP SANS) tests, transient mobility tests using Berea sandstone cores, and high-pressure computed-tomography (CT)-imaging tests using polystyrene cores. HP SANS analysis of foams residing in a small windowed cell demonstrated that the nonylphenol ethoxylate SURFONIC® N-150 [15 ethylene oxide (EO) groups] generated emulsions with a greater concentration of droplets and a broader distribution of droplet sizes than the shorter-chain analogs with 9–12 ethoxylates. The in-situ formation of weak foams was verified during transient mobility tests by measuring the pressure drop across a Berea sandstone core as a CO2/surfactant solution was injected into a Berea sandstone core initially saturated with brine; the pressure-drop values when surfactant was dissolved in the CO2 were at least twice those attained when pure CO2 was injected into the same brine-saturated core. The greatest mobility reduction was achieved when surfactant was added both to the brine initially in the core and to the injected CO2. CT imaging of CO2 invading a polystyrene core initially saturated with 5 wt% KI brine indicated that despite the oil-wet nature of this medium, a sharp foam front propagated through the core, and CO2 fingers that formed in the absence of a surfactant were completely suppressed by foams formed because of the addition of nonylphenol ethoxylate surfactant to the CO2 or the brine.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3