A Riveting Review of Worldwide Industrial Geological Carbon Capture and Storage Projects with the Junction of CO2 Emissions in Algeria.

Author:

Deghmoum Abdelhakim1,Baddari Kamel2

Affiliation:

1. Sonatrach/AMT/The Division of Laboratories, Boumerdes, 35000, Algeria

2. University of M'hamed Bougara Boumerdes (UMBB)/FS/Physics Depart/LIMOSE Laboratory, Algeria

Abstract

AbstractThe geological sequestration of CO2 is a relatively new technology that seems to have rapidly maturated in providing an effective process of capturing CO2 from industrial pollutant emissions and storing it securely in deep geological formations. Through this technology, the anthropogenic CO2 emissions can be reduced by 20% globally by 2050. Furthermore, it is expected that by the end of this century, more than 55% of CO2 emission can be captured and stored geologically. The compression, the transport and the injection of CO2 have been well used and controlled in the petroleum industry for many decades. However, CO2 capture process remains the weak point that should be overcome in order to make CCS economically feasible at industrial level. Moreover, no risk of leakage can occur at very long term in order to make CCS technology possible and generalized.The objective of this review is to analyze and to compare briefly the quantification of CO2 emissions in Algeria and to illustrate, with different case studies, the worldwide geological CCS pilot projects, particularly, those applied at industrial scale. The review is an attempt to assess critically what has been done and to predict what is ahead in this domain.Based on this review, the authors conclude that the global warming is the consequence of human egocentrism. CO2 should be considered as a valuable gas and not a waste, and CCS as a solution to global warming. Although there is negligible CO2 emission in Algeria, In Salah CCS project, built by BP-Statoil-Sonatrach consortium, is for demonstrating that pollution has no boundaries and every country is concerned by environmental issues. Thus, developing and developed countries should be urgently implicated in a serious and strong cooperation in the deployment of CCS technology before reaching irreversible global warming consequences.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3