Pore-Scale Joint Evaluation of Dielectric Permittivity and Electrical Resistivity for Assessment of Hydrocarbon Saturation Using Numerical Simulations

Author:

Chen Huangye1,Heidari Zoya2

Affiliation:

1. Texas A&M University

2. University of Texas at Austin

Abstract

Summary Complex pore geometry and composition, as well as anisotropic behavior and heterogeneity, can affect physical properties of rocks such as electrical resistivity and dielectric permittivity. The aforementioned physical properties are used to estimate in-situ petrophysical properties of the formation such as hydrocarbon saturation. In the application of conventional methods for interpretation of electrical-resistivity (e.g., Archie's equation and the dual-water model) and dielectric-permittivity measurements [e.g., complex refractive index model (CRIM)], the impacts of complex pore structure (e.g., kerogen porosity and intergranular pores), pyrite, and conductive mature kerogen have not been taken into account. These limitations cause significant uncertainty in estimates of water saturation. In this paper, we introduce a new method that combines interpretation of dielectric-permittivity and electrical-resistivity measurements to improve assessment of hydrocarbon saturation. The combined interpretation of dielectric-permittivity and electrical-resistivity measurements enables assimilating spatial distribution of rock components (e.g., pore, kerogen, and pyrite networks) in conventional models. We start with pore-scale numerical simulations of electrical resistivity and dielectric permittivity of fluid-bearing porous media to investigate the structure of pore and matrix constituents in these measurements. The inputs to these simulators are 3D pore-scale images. We then introduce an analytical model that combines resistivity and permittivity measurements to assess water-filled porosity and hydrocarbon saturation. We apply the new method to actual digital sandstones and synthetic digital organic-rich mudrock samples. The relative errors (compared with actual values estimated from image processing) in the estimate of water-filled porosity through our new method are all within the 10% range. In the case of digital sandstone samples, CRIM provided reasonable estimates of water-filled porosity, with only four out of twenty-one estimates beyond 10% relative error, with the maximum error of 30%. However, in the case of synthetic digital organic-rich mudrocks, six out of ten estimates for water-filled porosity were beyond 10% with CRIM, with the maximum error of 40%. Therefore, the improvement was more significant in the case of organic-rich mudrocks with complex pore structure. In the case of synthetic digital organic-rich mudrock samples, our simulation results confirm that not only the pore structure but also spatial distribution and tortuosity of water, kerogen, and pyrite networks affect the measurements of dielectric permittivity and electrical resistivity. Taking into account these parameters through the joint interpretation of dielectric-permittivity and electrical-resistivity measurements significantly improves assessment of hydrocarbon saturation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3