Drilling in the Delaware Basin with Shaped Diamond Elements Reduces Vibration and Increases Reaching Target Depth

Author:

Phillips Anthony1,Rickabaugh Caleb1,Gray Joel1,Savage Michael1,Ramsey Josh1

Affiliation:

1. Baker Hughes a GE Company

Abstract

Abstract Lateral stability at low depth-of-cut (DOC) has been a key factor affecting the durability and performance of polycrystalline diamond compact (PDC) bits. This paper describes how Shaped Diamond Element (SDE) technology proven in the laboratory and in Delaware Basin well construction can increase stability and boost performance with 66% improved footage while drilling 40% faster. The technology enables modifications to the cutting structure that changes the PDC bit stability response, controlling lateral instabilities. Full bit laboratory testing was used to measure a PDC bit's lateral stability during drilling. . An experimental, intentionally unstable 8.75-in. 6 blade PDC bit frame was designed as a baseline for testing, and a second bit with the same basic frame was built incorporating the SDE technology. Tests were run to examine the effect of exposure and number of shaped diamond elements on the bit's stability. The bits were tested at atmospheric pressure, in different rocks to indicate their response in soft and hard formations. The learnings from these tests were then applied to an 8.75-in. 7 bladed PDC bit for use in the Delaware basin. The SDE field test bits were equipped with in-bit sensing to confirm the benefits in operation that were observed in the laboratory test. Data from their runs are compared with offsets to quantify the benefit of the SDE technology over a number of months During laboratory tests in a soft limestone an instability boundary line was determined at 28% lateral instability, with a higher value indicating a more unstable bit. The baseline bit started at 28% indicating instability at low depths of cut and reached 100% with increasing DOC. The SDE bit designed for early engagement remained stable through the entire test independent of depth of cut achieving a 6% instability level. To establish the design criteria to maximize the stability benefits, the bits were tested with varying number of strategically placed SDE, and varying DOC. During the field runs with this technology, the results indicated an improvement in dull conditions increasing target depth (TD) rate by 21% and increasing the distance drilled by 10%. In one particular case, comparisons of the vibration data from the in-bit sensor showed a 42% reduction in drilling dysfunctions for this given interval, on consecutive wells on the same pad. The reduction in vibration reduced cutting structure damage yielding an increase in rate of penetration (ROP) by 40% and footage by 66% over offsets. Recognizing these dysfunctions associated with lateral instability as the most damaging to the bottom-hole assembly (BHA) it is important that they are mitigated or controlled. The drilling costs and efficiencies today are significantly important; they are the key to reduce any non-productive time (NPT). As the field data demonstrates, SDE that engage and cut the rock, can provide stability benefits that improve the bit's durability without reducing the bit's performance.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3