Velocity-Log Interpretation: The Effect of Rock Bulk Compressibility

Author:

Geertsma J.1

Affiliation:

1. Koninklijke/Shell Laboratorium

Abstract

Abstract Tbe relationsbip between porosity and the speed of propagation of acoustic waves in fluid-saturated porous rocks as measured by the Sonic log and by ultrasonic techniques is analyzed. Biot's continuum theory is used to explain the difference in acoustic wave propagation between a dry and a liquid-saturated porous material. The porosity is a variable in this theory. However, the acoustic wave propagation in the dry rock depends too on porosity, and this dependence is not predicted by the theory. Frequently in dry sandstones, a nearly linear relationsbip between reciprocal acoustic wave velocity and porosity is observed in the low-porosity range. The physics behind this behavior is outlined. An empirical relationship of the form, 1/V ~ A + B ø, applies accordingly for many porous dry rocks, provided the porosity is the only variable. The presence of a liquid in the pores changes the value of B, and this change is found to be in agreement with the Biot theory. The time-average relation introduced some years ago results in an equation of the same type 1/V = ø/Vf + (1 - ø)/Vr - but is not based on a sound physical picture. Still, this relation sometimes predicts approximately correct A and B values. Carbonate rocks with their complicated pore structures sometimes show a different relationship between wave velocity and porosity, unfavorable for log interpretation. Examples are presented. The simultaneous presence of calcite, dolomite and anhydrite, with their different grain densities and matrix compressibilities, complicates acoustic-log interpretation in carbonate rocks still further. Other complicating effects of acoustic-log interpretation are discussed. They are related to the influence of shale streaks and natural fractures on the average wave velocity observed by the logging tool and to the effect of adsorption phenomena on wave propagation in unstressed rocks particularly in sandstones.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3