Experimental Study of Microgel Conformance-Control Treatment for a Polymer-Flooding Reservoir Containing Superpermeable Channels

Author:

Zhao Yang1,Leng Jianqiao1,Lin Baihua2,Wei Mingzhen1,Bai Baojun1

Affiliation:

1. Missouri University of Science and Technology

2. Missouri University of Science and Technology (Now with Linpan Production Plant, Shengli Oilfield Co. Ltd., Sinopec)

Abstract

SummaryPolymer flooding has been widely used to improve oil recovery. However, its effectiveness would be diminished when channels (e.g., fractures, fracture-like channels, void-space conduits) are present in a reservoir. In this study, we designed a series of particular sandwich-like channel models and tested the effectiveness and applicable conditions of micrometer-sized preformed particle gels (PPGs, or microgels) in improving the polymer-flooding efficiency. We studied the selective penetration and placement of the microgel particles, and their abilities for fluid diversion and oil-recovery improvement. The results suggest that polymer flooding alone would be inefficient to achieve a satisfactory oil recovery as the heterogeneity of the reservoir becomes more serious (e.g., permeability contrast kc/km > 50). The polymer solution would vainly flow through the channels and leave the majority of oil in the matrices behind. Additional conformance-treatment efforts are required. We tried to inject microgels in an attempt to shut off the channels. After the microgel treatment, impressive improvement of the polymer-flooding performance was observed in some of our experiments. The water cut could be reduced significantly by as high as nearly 40%, and the sweep efficiency and overall oil recovery of the polymer flood were improved. The conditions under which the microgel-treatment strategy was effective were further explored. We observed that the microgels form an external impermeable cake at the very beginning of microgel injection and prevent the gel particles from entering the matrices. Instead, the microgel particles could selectively penetrate and shut off the superpermeable channels under proper conditions. Our results suggest that the 260-µm microgel particles tested in this study are effective to attack the excessive-water-production problem and improve the oil recovery when the channel has a high permeability (>50 darcies). The gels are unlikely to be effective for channels that are less than 30 darcies because of the penetration/transport difficulties. After the gels effectively penetrate and shut off the superpermeable channel, the subsequent polymer solution is diverted to the matrices (i.e., the unswept oil zones) to displace the bypassed oil. Overall, this study provides important insights to help achieve successful polymer-flooding applications in reservoirs with superpermeable channels.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3