In Situ Upgrading of Heavy Oil

Author:

Xu H.H.1,Okazawa N.E.1,Moore R.G.1,Mehta S.A.1,Laureshen C.J.1,Ursenbach M.G.1,Mallory D.G.1

Affiliation:

1. University of Calgary

Abstract

Abstract Low temperature oxidation (LTO) of hydrocarbon liquids generally results in a more viscous end product; this has clearly been shown in the literature of the past 30 years. However, under the right conditions, LTO can be used to achieve viscosity reduction in heavy oils. The In Situ Combustion Group at the University of Calgary conceived of a two-stage LTO process whereby oil is contacted with air, first at low, then at elevated, temperatures. The first, low temperature, step incorporates oxygen into some of the hydrocarbons, yielding labile bonds that should break at lower-than-usual temperatures. Once these free radicals are formed, the second step promotes bond cleavage at higher temperatures, resulting in shorter chain hydrocarbons. In a field situation, this process would be analogous to first injecting air into a formation at low temperature, then starting a steam soak or steam flood. Experimental runs carried out on Athabasca bitumen examined the effects of oxygen partial pressure, temperature, reaction time, and the presence of rock and brine. On completion of each experiment, the gas composition was determined using gas chromatography, water acidity (pH) was measured, and the hydrocarbon products were analysed for coke and asphaltenes contents, viscosity, and density. Some instances of viscosity reduction have been observed; these are linked to lower oxygen partial pressures, higher second stage temperatures and longer run times. This paper discusses the experimental work, and estimates the optimum conditions for successful viscosity reduction of a given heavy oil. Introduction Heavy oil and oil sands are important hydrocarbon resources that total over 10 trillion barrels, nearly three times the conventional oil in place in the world. The oil sands of Alberta alone contain over two trillion barrels of oil. In Canada, approximately 20﹪ of oil production is from heavy oil and oil sand resources(1). The application of thermal energy to increase heavy oil recovery has become more popular as conventional reserves decline. Steam injection accounts for the majority of the thermal recovery projects currently in operation; however in situ combustion offers many theoretical advantages if the operational characteristics of the process are incorporated in the design and operation of the field project. A major difficulty encountered in operating in situ combustion processes is low temperature oxidation (LTO), which involves oxygen addition reactions that occur at temperatures lower than 300 °CDATA [C. Typically, the byproducts of these reactions are oxidized hydrocarbons that have an increased polarity. This makes them more viscous, and thus detrimental to the in situ combustion process. Because of the major impact that LTO can have on the performance of an in situ project, a significant number of investigations have been carried out on the nature and effect of LTO reactions(2-27). In some circumstances, however, it may be beneficial to subject oil to LTO. The experimental results of Cram and Redford showed that air/steam combinations can provide better recovery rates and better thermal efficiencies than steam alone, at comparable volumes of steam injected, when the process is carried out in the low temperature oxidation region((28). It is believed that energy generation by the exothermic oxidation reactions is a significant factor in the LTO process.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3