Microfluidic PVT--Saturation Pressure and Phase-Volume Measurement of Black Oils

Author:

Molla Shahnawaz1,Mostowfi Farshid1

Affiliation:

1. Schlumberger

Abstract

Summary In this work, we present a small-scale pressure/volume/temperature (PVT) cell that allows for the measurement of saturation pressure and phase-volume ratio by use of only a few microliters of black-oil samples. This novel PVT measurement technique has been successfully tested on live samples at elevated pressure (86 MPa) and temperature (150°C). In the microfluidic PVT platform, the small microfluidic device performs the same function as the laboratory-scale pressurized visual PVT cell. At the heart of the microfluidic device, is a long and narrow capillary, densely packed in a serpentine shape, embedded on the device. The capillary is nearly 1 m long and has a total volume of 5 µL. The microfluidic device is fabricated with glass and silicon, which allow visual monitoring of a fluid sample at various pressures and temperatures. To acquire PVT data, the pressure in the capillary is systematically reduced to accurately detect the appearance of micron-sized gas bubbles in a sample at saturation pressure. Because of the small thermal mass of the device, the temperature of the sample can be changed rapidly, which enables the measurement of multiple saturation pressures in quick succession. Below the saturation pressure, the growing gas bubbles form a segmented gas/liquid distribution in the capillary. The lengths of the liquid and gas segments are measured in real-time with an automated image-capturing and analysis tool to determine the gas/liquid phase-volume ratio at a given pressure. Validation tests have proved this technique to be repeatable and feasible for rapid PVT measurements of black oils [gas/oil ratio (GOR) ranging from 102 to 143 m3/m3]. The results presented in this study demonstrate that the microfluidic PVT system can measure saturation pressure and phase-volume with data quality comparable to that of the conventional PVT method, however, with significantly smaller sample volume and faster turnaround. The microfluidic PVT system is demonstrated to have the potential to become a reliable and portable measurement platform.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3